40,931 research outputs found
"Low-state" Black Hole Accretion in Nearby Galaxies
I summarize the main observational properties of low-luminosity AGNs in
nearby galaxies to argue that they are the high-mass analogs of black hole
X-ray binaries in the "low/hard" state. The principal characteristics of
low-state AGNs can be accommodated with a scenario in which the central engine
is comprised of three components: an optically thick, geometrically accretion
disk with a truncated inner radius, a radiatively inefficient flow, and a
compact jet.Comment: 8 pages. To appear in From X-ray Binaries to Quasars: Black Hole
Accretion on All Mass Scales, ed. T. J. Maccarone, R. P. Fender, and L. C. Ho
(Dordrecht: Kluwer
Chiral Electronics
We consider the properties of electric circuits involving Weyl semimetals.
The existence of the anomaly-induced chiral magnetic current in a Weyl
semimetal subjected to magnetic field causes an interesting and unusual
behavior of such circuits. We consider two explicit examples: i) a circuit
involving the "chiral battery" and ii) a circuit that can be used as a "quantum
amplifier" of magnetic field. The unique properties of these circuits stem from
the chiral anomaly and may be utilized for creating "chiral electronic"
devices.Comment: 5 pages, 2 figures; final version to appear in Physical Review
Steep-Spectrum Radio Emission from the Low-Mass Active Galactic Nucleus GH 10
GH 10 is a broad-lined active galactic nucleus (AGN) energized by a black
hole of mass 800,000 Solar masses. It was the only object detected by Greene et
al. in their Very Large Array (VLA) survey of 19 low-mass AGNs discovered by
Greene & Ho. New VLA imaging at 1.4, 4.9, and 8.5 GHz reveals that GH 10's
emission has an extent of less than 320 pc, has an optically-thin synchrotron
spectrum with a spectral index -0.76+/-0.05, is less than 11 percent linearly
polarized, and is steady - although poorly sampled - on timescales of weeks and
years. Circumnuclear star formation cannot dominate the radio emission, because
the high inferred star formation rate, 18 Solar masses per year, is
inconsistent with the rate of less than 2 Solar masses per year derived from
narrow Halpha and [OII] 3727 emission. Instead, the radio emission must be
mainly energized by the low-mass black hole. GH 10's radio properties match
those of the steep-spectrum cores of Palomar Seyfert galaxies, suggesting that,
like those Seyferts, the emission is outflow-driven. Because GH 10 is radiating
close to its Eddington limit, it may be a local analog of the starting
conditions, or seeds, for supermassive black holes. Future imaging of GH 10 at
higher resolution thus offers an opportunity to study the relative roles of
radiative versus kinetic feedback during black-hole growth.Comment: 7 pages; 2 figures; emulateapj; to appear in Ap
Noncommutative D-Brane in Non-Constant NS-NS B Field Background
We show that when the field strength H of the NS-NS B field does not vanish,
the coordinates X and momenta P of an open string endpoints satisfy a set of
mixed commutation relations among themselves. Identifying X and P with the
coordinates and derivatives of the D-brane world volume, we find a new type of
noncommutative spaces which is very different from those associated with a
constant B field background.Comment: 11 pages, Latex, minor modification
Radio Emission from the Intermediate-mass Black Hole in the Globular Cluster G1
We have used the Very Large Array (VLA) to search for radio emission from the
globular cluster G1 (Mayall-II) in M31. G1 has been reported by Gebhardt et al.
to contain an intermediate-mass black hole (IMBH) with a mass of ~2 x 10^4
solar masses. Radio emission was detected within an arcsecond of the cluster
center with an 8.4 GHz power of 2 x 10^{15} W/Hz. The radio/X-ray ratio of G1
is a few hundred times higher than that expected for a high-mass X-ray binary
in the cluster center, but is consistent with the expected value for accretion
onto an IMBH with the reported mass. A pulsar wind nebula is also a possible
candidate for the radio and X-ray emission from G1; future high-sensitivity
VLBI observations might distinguish between this possibility and an IMBH. If
the radio source is an IMBH, and similar accretion and outflow processes occur
for hypothesized ~ 1000-solar-mass black holes in Milky Way globular clusters,
they are within reach of the current VLA and should be detectable easily by the
Expanded VLA when it comes on line in 2010.Comment: ApJ Letters, accepted, 11 pages, 1 figur
Inflatonless Inflation
We consider a 4+N dimensional Einstein gravity coupled to a non-linear sigma
model. This theory admits a solution in which the N extra dimensions contract
exponentially while the ordinary space expand exponentially. Physically, the
non-linear sigma fields induce the dynamical compactification of the extra
dimensions, which in turn drives inflation. No inflatons are required.Comment: 12 pages, version to appear in IJMP
Limits on MeV Dark Matter from the Effective Number of Neutrinos
Thermal dark matter that couples more strongly to electrons and photons than
to neutrinos will heat the electron-photon plasma relative to the neutrino
background if it becomes nonrelativistic after the neutrinos decouple from the
thermal background. This results in a reduction in N_eff below the
standard-model value, a result strongly disfavored by current CMB observations.
Taking conservative lower bounds on N_eff and on the decoupling temperature of
the neutrinos, we derive a bound on the dark matter particle mass of m_\chi >
3-9 MeV, depending on the spin and statistics of the particle. For p-wave
annihilation, our limit on the dark matter particle mass is stronger than the
limit derived from distortions to the CMB fluctuation spectrum produced by
annihilations near the epoch of recombination.Comment: 5 pages, 1 figure, discussion added, references added and updated,
labels added to figure, to appear in Phys. Rev.
1/2 BPS Geometries of M2 Giant Gravitons
We construct the general 1/2 BPS M2 giant graviton solutions asymptotic to
the eleven-dimensional maximally supersymmetric plane wave background, based on
the recent work of Lin, Lunin and Maldacena. The solutions have null
singularity and we argue that it is unavoidable to have null singularity in the
proposed framework, although the solutions are still physically relevant. They
involve an arbitrary function F(x) which is shown to have a correspondence to
the 1/2 BPS states of the BMN matrix model. A detailed map between the 1/2 BPS
states of both sides is worked out.Comment: 21 pages and 1 figure. v2: references added, comments adde
Electro-Optic Modulation of Single Photons
We use the Stokes photon of a biphoton pair to set the time origin for
electro-optic modulation of the wave function of the anti-Stokes photon thereby
allowing arbitrary phase and amplitude modulation. We demonstrate conditional
single-photon wave functions composed of several pulses, or instead, having
gaussian or exponential shapes
- …