36,023 research outputs found
Anomaly-induced Quadrupole Moment of the Neutron in Magnetic Field
The neutrons cannot possess a quadrupole moment in the vacuum. Nevertheless,
we show that in the presence of an external magnetic field the neutrons acquire
a new type of quadrupole moment involving the
components of spin and magnetic field. This "chiral magnetic" quadrupole moment
arises from the interplay of the chiral anomaly and the magnetic field; we
estimate its value for the neutron in the static limit, and find . The detection of the quadrupole moment of the
neutron would provide a novel test of the role of the chiral anomaly in
low-energy QCD and can be possible in the presence of both magnetic and
inhomogeneous electric fields. The quadrupole moment of the neutron may affect
e.g. the properties of neutron stars and magnetars.Comment: 2 pages; extended versio
High temperature expansion applied to fermions near Feshbach resonance
We show that, apart from a difference in scale, all of the surprising
recently observed properties of a degenerate Fermi gas near a Feshbach
resonance persist in the high temperature Boltzmann regime. In this regime, the
Feshbach resonance is unshifted. By sweeping across the resonance, a thermal
distribution of bound states (molecules) can be reversibly generated.
Throughout this process, the interaction energy is negative and continuous. We
also show that this behavior must persist at lower temperatures unless there is
a phase transition as the temperature is lowered. We rigorously demonstrate
universal behavior near the resonance.Comment: 4 pages, 4 figures (3 color, 1 BW), RevTeX4; ver4 -- updated
references, changed title -- version accepted for publication in Physical
Review Letter
Duality of Quasilocal Black Hole Thermodynamics
We consider T-duality of the quasilocal black hole thermodynamics for the
three-dimensional low energy effective string theory. Quasilocal thermodynamic
variables in the first law are explicitly calculated on a general axisymmetric
three-dimensional black hole solution and corresponding dual one. Physical
meaning of the dual invariance of the black hole entropy is considered in terms
of the Euclidean path integral formulation.Comment: 19 pages, Latex, no figures, to be published in Class. Quantum Grav.
Some minor changes, references adde
Noisy pre-processing facilitating a photonic realisation of device-independent quantum key distribution
Device-independent quantum key distribution provides security even when the
equipment used to communicate over the quantum channel is largely
uncharacterized. An experimental demonstration of device-independent quantum
key distribution is however challenging. A central obstacle in photonic
implementations is that the global detection efficiency, i.e., the probability
that the signals sent over the quantum channel are successfully received, must
be above a certain threshold. We here propose a method to significantly relax
this threshold, while maintaining provable device-independent security. This is
achieved with a protocol that adds artificial noise, which cannot be known or
controlled by an adversary, to the initial measurement data (the raw key).
Focusing on a realistic photonic setup using a source based on spontaneous
parametric down conversion, we give explicit bounds on the minimal required
global detection efficiency.Comment: 5+16 pages, 4 figure
Identifying entanglement using quantum "ghost" interference and imaging
We report a quantum interference and imaging experiment which quantitatively
demonstrates that Einstein-Podolsky-Rosen (EPR) type entangled two-photon
states exhibit both momentum-momentum and position-position correlations,
stronger than any classical correlation. The measurements show indeed that the
uncertainties in the sum of momenta and in the difference of positions of the
entangled two-photon satisfy both EPR inequalities D(k1+k2)<min(D(k1),D(k2))
and D(x1-x2)<min(D(x1),D(x2)). These two inequalities, together, represent a
non-classicality condition. Our measurements provide a direct way to
distinguish between quantum entanglement and classical correlation in
continuous variables for two-photons/two photons systems.Comment: We have changed Eq.(2) from one inequality to two inequalities. The
two expressions are actually consistent with each other, but the new one
represents a more stringent condition for entanglement and, in our opinion,
better explains the original idea of EPR. We have clarified this point in the
paper. 4 pages; submitted to PR
Two--Electron Atoms in Short Intense Laser Pulses
We discuss a method of solving the time dependent Schrodinger equation for
atoms with two active electrons in a strong laser field, which we used in a
previous paper [A. Scrinzi and B. Piraux, Phys. Rev. A 56, R13 (1997)] to
calculate ionization, double excitation and harmonic generation in Helium by
short laser pulses. The method employs complex scaling and an expansion in an
explicitly correlated basis. Convergence of the calculations is documented and
error estimates are provided. The results for Helium at peak intensities up to
10^15 W/cm^2 and wave length 248 nm are accurate to at least 10 %. Similarly
accurate calculations are presented for electron detachment and double
excitation of the negative hydrogen ion.Comment: 14 pages, including figure
Dual neutral variables and knot solitons in triplet superconductors
In this paper we derive a dual presentation of free energy functional for
spin-triplet superconductors in terms of gauge-invariant variables. The
resulting equivalent model in ferromagnetic phase has a form of a version of
the Faddeev model. This allows one in particular to conclude that spin-triplet
superconductors allow formation of stable finite-length closed vortices (the
knotted solitons).Comment: Replaced with version published in PRL (added a discussion of the
effect of the coupling of the fields {\vec s} and {\vec C} on knot
stability). Latest updates of the paper and miscellaneous links related to
knotted solitons are also available at the homepage of the author
http://www.teorfys.uu.se/PEOPLE/egor/ . Animations of knotted solitons by
Hietarinta and Salo are available at
http://users.utu.fi/h/hietarin/knots/c45_p2.mp
- …