80 research outputs found
Self-consistent parametrization of the two-flavor isotropic color-superconducting ground state
Lack of Lorentz invariance of QCD at finite quark chemical potential in
general implies the need of Lorentz non-invariant condensates for the
self-consistent description of the color-superconducting ground state.
Moreover, the spontaneous breakdown of color SU(3) in this state naturally
leads to the existence of SU(3) non-invariant non-superconducting expectation
values. We illustrate these observations by analyzing the properties of an
effective 2-flavor Nambu-Jona-Lasinio type Lagrangian and discuss the
possibility of color-superconducting states with effectively gapless fermionic
excitations. It turns out that the effect of condensates so far neglected can
yield new interesting phenomena.Comment: 16 pages, 3 figure
Anisotropic admixture in color-superconducting quark matter
The analysis of color-superconducting two-flavor deconfined quark matter at
moderate densities is extended to include a particular spin-1 Cooper pairing of
those quarks which do not participate in the standard spin-0 diquark
condensate. (i) The relativistic spin-1 gap Delta' implies spontaneous
breakdown of rotation invariance manifested in the form of the quasi-fermion
dispersion law. (ii) The critical temperature of the anisotropic component is
approximately given by the relation T_c'~ Delta'(T=0)/3. (iii) For massless
fermions the gas of anisotropic Bogolyubov-Valatin quasiquarks becomes
effectively gapless and two-dimensional. Consequently, its specific heat
depends quadratically on temperature. (iv) All collective Nambu-Goldstone
excitations of the anisotropic phase have a linear dispersion law and the whole
system remains a superfluid. (v) The system exhibits an electromagnetic
Meissner effect.Comment: v2: references added, angular dependence of the gap clarified, v3:
extended discussion, typo in eq. (5) corrected, version accepted for
publication in PR
Summary of OSQAR First Achievements and Main Requests for 2008
Abstract - In the first paragraph, OSQAR foremost achievements are summarised together with a brief reminder of its scientific context. In the second paragraph, activities planned for 2008 are briefly reviewed including the expected scientific results. The third paragraph is devoted to the requests addressed to CERN as the host laboratory and as a collaboration member of the OSQAR photon regeneration experiment
Dynamical electroweak symmetry breaking due to strong Yukawa interactions
We present a new mechanism for electroweak symmetry breaking (EWSB) based on
a strong Yukawa dynamics. We consider an SU(2)_L x U(1)_Y gauge invariant model
endowed with the usual Standard model fermion multiplets and with two massive
scalar doublets. We show that, unlike in the Standard model, EWSB is possible
even with vanishing vacuum expectation values of the scalars. Such EWSB is
achieved dynamically by means of the (presumably strong) Yukawa couplings and
manifests itself by the emergence of fermion and gauge boson masses and scalar
mass-splittings, which are expressed in a closed form in terms of the fermion
and scalar proper self-energies. The `would-be' Nambu--Goldstone bosons are
shown to be composites of both the fermions and the scalars. We demonstrate
that the simplest version of the model is compatible with basic experimental
constraints.Comment: 6 pages, REVTeX4, 3 eps figures; discussion of compatibility with EW
precision data added; version published in J. Phys.
The Shaqadud Archaeological Project (Sudan): exploring prehistoric cultural adaptations in the Sahelian hinterlands
The authors present preliminary results from a new research project based in Jebel Shaqadud, Sudan. Their findings highlight the potential for this region's archaeological record to expand our understanding of the adaptation strategies used by human groups in arid north-east African environments away from rivers and lakes during the Holocene. Furthermore, they present exceptionally early radiocarbon dates that push postglacial human occupation in the eastern Sahel back to the twelfth millennium BP
Using metadynamics to explore complex free-energy landscapes
Metadynamics is an atomistic simulation technique that allows, within the same framework, acceleration of rare events and estimation of the free energy of complex molecular systems. It is based on iteratively \u2018filling\u2019 the potential energy of the system by a sum of Gaussians centred along the trajectory followed by a suitably chosen set of collective variables (CVs), thereby forcing the system to migrate from one minimum to the next. The power of metadynamics is demonstrated by the large number of extensions and variants that have been developed. The first scope of this Technical Review is to present a critical comparison of these variants, discussing their advantages and disadvantages. The effectiveness of metadynamics, and that of the numerous alternative methods, is strongly influenced by the choice of the CVs. If an important variable is neglected, the resulting estimate of the free energy is unreliable, and predicted transition mechanisms may be qualitatively wrong. The second scope of this Technical Review is to discuss how the CVs should be selected, how to verify whether the chosen CVs are sufficient or redundant, and how to iteratively improve the CVs using machine learning approaches
- …