4,181 research outputs found

    pH affects growth, physiology and agar properties of agarophyte Gracilaria changii (Rhodophyta) under low light intensity from Morib, Malaysia

    Get PDF
    Changes in coastal water pH alter inorganic carbon chemistry and impose abiotic stress on photosynthetic marine organisms. The red algal cell wall contains sulfated agar which protects them against environmental stresses. In this study, we investigated the effects of three different pHs (6.61, 8.04 and 9.30) on Gracilaria changii cultured in artificial seawater for 3 and 6 days, respectively. The growth rate of G. changii was the highest and the lowest at pH 6.61 and pH 9.30, respectively. Partial thallus degradation was observed in seaweeds treated at pH 9.30. Upon a 3-day treatment, the levels of allophycocyanin, total phycobilins in G. changii cultured at pH 6.61, and all photosynthetic pigments in G. changii cultured at pH 9.30, were significantly lower than those cultured at pH 8.04. G. changii exposed to pH 9.30 for 6 days also had significantly lower levels of chlorophyll a and allophycocyanin than those treated at pH 8.04. A six-day treatment at pH 6.61 caused a decline in the content of chlorophyll a and carotenoids, but an increase in the levels of phycoerythrin, phycocyanin, and total phycobilins, compared to those treated at pH 8.04. G. changii samples treated at pH 6.61 and pH 9.30 have a higher agar content compared to those cultured at 8.04. Gel strength was significantly lower in seaweed cultured at pH 9.30, compared to those cultured at pH 8.04. Gelling temperature and 3,6-anhydrogalactose content of agar were significantly affected by different pHs, but no significant changes were found in the melting temperature, gel syneresis and sulfate content of agar upon treatments. These information enhance our knowledge on physiological response and agar production in G. changii at different pHs, and useful for optimization of seaweed cultivation system in future

    Association between Zolpidem Use and Glaucoma Risk: A Taiwan Population-Based Case-control Study

    Get PDF
    [[journaltype]]國外[[incitationindex]]SCI[[ispeerreviewed]]Y[[booktype]]電子版[[countrycodes]]US

    Electrocoalescence of liquid marbles driven by embedded electrodes for triggering bioreactions

    Get PDF
    Liquid marbles need to be controlled precisely to benefit applications, for instance, as microreactors on digital microfluidic platforms for chemical and biological assays. In this work, a strategy is introduced to coalesce liquid marbles via electrostatics, where two liquid marbles in contact can coalesce when a sufficiently high voltage is applied to embedded electrodes. With the understanding of the mechanism of coalescence through relating the electric stress and the restoring capillary pressure at the contact interface, this method coalesces liquid marbles efficiently. When compared with the existing electrocoalescence method, our approach does not require immersion of electrodes to trigger coalescence. We demonstrate this to exchange the medium for the culture of cell spheroids and to measure the cell metabolic activity through a CCK-8 assay. The manipulation of liquid marbles driven by electrostatics creates new opportunities to conduct chemical reactions and biomedical assays in these novel microreactors

    Lab-in-a-Tube: A portable imaging spectrophotometer for cost-effective, high-throughput, and label-free analysis of centrifugation processes

    Full text link
    Centrifuges serve as essential instruments in modern experimental sciences, facilitating a wide range of routine sample processing tasks that necessitate material sedimentation. However, the study for real time observation of the dynamical process during centrifugation has remained elusive. In this study, we developed an innovative Lab_in_a_Tube imaging spectrophotometer that incorporates capabilities of real time image analysis and programmable interruption. This portable LIAT device costs less than 30 US dollars. Based on our knowledge, it is the first Wi Fi camera built_in in common lab centrifuges with active closed_loop control. We tested our LIAT imaging spectrophotometer with solute solvent interaction investigation obtained from lab centrifuges with quantitative data plotting in a real time manner. Single re circulating flow was real time observed, forming the ring shaped pattern during centrifugation. To the best of our knowledge, this is the very first observation of similar phenomena. We developed theoretical simulations for the single particle in a rotating reference frame, which correlated well with experimental results. We also demonstrated the first demonstration to visualize the blood sedimentation process in clinical lab centrifuges. This remarkable cost effectiveness opens up exciting opportunities for centrifugation microbiology research and paves the way for the creation of a network of computational imaging spectrometers at an affordable price for large scale and continuous monitoring of centrifugal processes in general.Comment: 21 Pages, 6 Figure
    corecore