1,277 research outputs found

    Critical points of the optimal quantum control landscape: a propagator approach

    Full text link
    Numerical and experimental realizations of quantum control are closely connected to the properties of the mapping from the control to the unitary propagator. For bilinear quantum control problems, no general results are available to fully determine when this mapping is singular or not. In this paper we give suffcient conditions, in terms of elements of the evolution semigroup, for a trajectory to be non-singular. We identify two lists of "way-points" that, when reached, ensure the non-singularity of the control trajectory. It is found that under appropriate hypotheses one of those lists does not depend on the values of the coupling operator matrix

    Singularity-free quantum tracking control of molecular rotor orientation

    Full text link
    Quantum tracking control aims to identify applied fields to steer the expectation values of particular observables along desired paths in time. The associated temporal fields can be identified by inverting the underlying dynamical equations for the observables. However, fields found in this manner are often plagued by undesirable singularities. In this paper we consider a planar molecular rotor, and derive singularity-free tracking expressions for the fields that steer the expectation of the orientation of the rotor along desired trajectories in time. Simulations are presented that utilize two orthogonal control electric fields to drive the orientation of the rotor along a series of designated tracks

    Characterization of the Critical Sets of Quantum Unitary Control Landscapes

    Full text link
    This work considers various families of quantum control landscapes (i.e. objective functions for optimal control) for obtaining target unitary transformations as the general solution of the controlled Schr\"odinger equation. We examine the critical point structure of the kinematic landscapes J_F (U) = ||(U-W)A||^2 and J_P (U) = ||A||^4 - |Tr(AA'W'U)|^2 defined on the unitary group U(H) of a finite-dimensional Hilbert space H. The parameter operator A in B(H) is allowed to be completely arbitrary, yielding an objective function that measures the difference in the actions of U and the target W on a subspace of state space, namely the column space of A. The analysis of this function includes a description of the structure of the critical sets of these kinematic landscapes and characterization of the critical points as maxima, minima, and saddles. In addition, we consider the question of whether these landscapes are Morse-Bott functions on U(H). Landscapes based on the intrinsic (geodesic) distance on U(H) and the projective unitary group PU(H) are also considered. These results are then used to deduce properties of the critical set of the corresponding dynamical landscapes.Comment: 15 pages, 3 figure

    Exploring Quantum Control Landscape Structure

    Full text link
    A common goal of quantum control is to maximize a physical observable through the application of a tailored field. The observable value as a function of the field constitutes a quantum control landscape. Previous works have shown, under specified conditions, that the quantum control landscape should be free of suboptimal critical points. This favorable landscape topology is one factor contributing to the efficiency of climbing the landscape. An additional, complementary factor is the landscape \textit{structure}, which constitutes all non-topological features. If the landscape's structure is too complex, then climbs may be forced to take inefficient convoluted routes to finding optimal controls. This paper provides a foundation for understanding control landscape structure by examining the linearity of gradient-based optimization trajectories through the space of control fields. For this assessment, a metric R1R\geq 1 is defined as the ratio of the path length of the optimization trajectory to the Euclidean distance between the initial control field and the resultant optimal control field that takes an observable from the bottom to the top of the landscape. Computational analyses for simple model quantum systems are performed to ascertain the relative abundance of nearly straight control trajectories encountered when optimizing a state-to-state transition probability. The collected results indicate that quantum control landscapes have very simple structural features. The favorable topology and the complementary simple structure of the control landscape provide a basis for understanding the generally observed ease of optimizing a state-to-state transition probability.Comment: 27 pages, 7 figure

    An Analysis of Traditional Issue Specific and Macroeconomic Variables on US Commercial Mortgage Backed Securities

    Get PDF
    This paper examines the effects of traditional issue-specific commercial mortgage backed securities (CMBS) variables on US CMBS spreads. In addition, a decomposition of the Conference Board?s US Leading Economic Indicators (LEI) Index will be examined for each of the ten component?s explanatory power for US CMBS spreads. A qualitative examination of the history and setting of the US subprime crisis, features of US CMBS, and an outline of The Conference Board?s US LEI components are provided. This is followed by an explanation of assumptions and the methodology used for the statistical analysis of the fourteen variables on CMBS spreads. In addition, the NA REIT Composite Index Dividend Yield is hypothesized to contribute to the CMBS spreads. A conclusion will contain results and proposals for an improved model, in contrast to Jadeja and Dorokov (Summer 2008). This paper closes with a discussion of possible sources of errors and guidance for future studies

    Exploration of the memory effect on the photon-assisted tunneling via a single quantum dot: A generalized Floquet theoretical approach

    Full text link
    The generalized Floquet approach is developed to study memory effect on electron transport phenomena through a periodically driven single quantum dot in an electrode-multi-level dot-electrode nanoscale quantum device. The memory effect is treated using a multi-function Lorentzian spectral density (LSD) model that mimics the spectral density of each electrode in terms of multiple Lorentzian functions. For the symmetric single-function LSD model involving a single-level dot, the underlying single-particle propagator is shown to be related to a 2 x 2 effective time-dependent Hamiltonian that includes both the periodic external field and the electrode memory effect. By invoking the generalized Van Vleck (GVV) nearly degenerate perturbation theory, an analytical Tien-Gordon-like expression is derived for arbitrary order multi- photon resonance d.c. tunneling current. Numerically converged simulations and the GVV analytical results are in good agreement, revealing the origin of multi- photon coherent destruction of tunneling and accounting for the suppression of the staircase jumps of d.c. current due to the memory effect. Specially, a novel blockade phenomenon is observed, showing distinctive oscillations in the field-induced current in the large bias voltage limit

    Continuous Monitoring of Distributed Data Streams over a Time-based Sliding Window

    Get PDF
    The past decade has witnessed many interesting algorithms for maintaining statistics over a data stream. This paper initiates a theoretical study of algorithms for monitoring distributed data streams over a time-based sliding window (which contains a variable number of items and possibly out-of-order items). The concern is how to minimize the communication between individual streams and the root, while allowing the root, at any time, to be able to report the global statistics of all streams within a given error bound. This paper presents communication-efficient algorithms for three classical statistics, namely, basic counting, frequent items and quantiles. The worst-case communication cost over a window is O(kϵlogϵNk)O(\frac{k} {\epsilon} \log \frac{\epsilon N}{k}) bits for basic counting and O(kϵlogNk)O(\frac{k}{\epsilon} \log \frac{N}{k}) words for the remainings, where kk is the number of distributed data streams, NN is the total number of items in the streams that arrive or expire in the window, and ϵ<1\epsilon < 1 is the desired error bound. Matching and nearly matching lower bounds are also obtained.Comment: 12 pages, to appear in the 27th International Symposium on Theoretical Aspects of Computer Science (STACS), 201

    DeepStory: Video Story QA by Deep Embedded Memory Networks

    Full text link
    Question-answering (QA) on video contents is a significant challenge for achieving human-level intelligence as it involves both vision and language in real-world settings. Here we demonstrate the possibility of an AI agent performing video story QA by learning from a large amount of cartoon videos. We develop a video-story learning model, i.e. Deep Embedded Memory Networks (DEMN), to reconstruct stories from a joint scene-dialogue video stream using a latent embedding space of observed data. The video stories are stored in a long-term memory component. For a given question, an LSTM-based attention model uses the long-term memory to recall the best question-story-answer triplet by focusing on specific words containing key information. We trained the DEMN on a novel QA dataset of children's cartoon video series, Pororo. The dataset contains 16,066 scene-dialogue pairs of 20.5-hour videos, 27,328 fine-grained sentences for scene description, and 8,913 story-related QA pairs. Our experimental results show that the DEMN outperforms other QA models. This is mainly due to 1) the reconstruction of video stories in a scene-dialogue combined form that utilize the latent embedding and 2) attention. DEMN also achieved state-of-the-art results on the MovieQA benchmark.Comment: 7 pages, accepted for IJCAI 201
    corecore