1,642 research outputs found

    Antibody stabilization for thermally accelerated deep immunostaining

    Get PDF
    Antibodies have diverse applications due to their high reaction specificities but are sensitive to denaturation when a higher working temperature is required. We have developed a simple, highly scalable and generalizable chemical approach for stabilizing off-the-shelf antibodies against thermal and chemical denaturation. We demonstrate that the stabilized antibodies (termed SPEARs) can withstand up to 4 weeks of continuous heating at 55 °C and harsh denaturants, and apply our method to 33 tested antibodies. SPEARs enable flexible applications of thermocycling and denaturants to dynamically modulate their binding kinetics, reaction equilibrium, macromolecular diffusivity and aggregation propensity. In particular, we show that SPEARs permit the use of a thermally facilitated three-dimensional immunolabeling strategy (termed ThICK staining), achieving whole mouse brain immunolabeling within 72 h, as well as nearly fourfold deeper penetration with threefold less antibodies in human brain tissue. With faster deep-tissue immunolabeling and broad compatibility with tissue processing and clearing methods without the need for any specialized equipment, we anticipate the wide applicability of ThICK staining with SPEARs for deep immunostaining

    Oscillatory cortical forces promote three dimensional cell intercalations that shape the murine mandibular arch

    Get PDF
    Multiple vertebrate embryonic structures such as organ primordia are composed of confluent cells. Although mechanisms that shape tissue sheets are increasingly understood, those which shape a volume of cells remain obscure. Here we show that 3D mesenchymal cell intercalations are essential to shape the mandibular arch of the mouse embryo. Using a genetically encoded vinculin tension sensor that we knock-in to the mouse genome, we show that cortical force oscillations promote these intercalations. Genetic loss- and gain-of-function approaches show that Wnt5a functions as a spatial cue to coordinate cell polarity and cytoskeletal oscillation. These processes diminish tissue rigidity and help cells to overcome the energy barrier to intercalation. YAP/TAZ and PIEZO1 serve as downstream effectors of Wnt5a-mediated actomyosin polarity and cytosolic calcium transients that orient and drive mesenchymal cell intercalations. These findings advance our understanding of how developmental pathways regulate biophysical properties and forces to shape a solid organ primordium

    Developing a digital intervention for cancer survivors: an evidence-, theory- and person-based approach

    Get PDF
    This paper illustrates a rigorous approach to developing digital interventions using an evidence-, theory- and person-based approach. Intervention planning included a rapid scoping review which identified cancer survivors’ needs, including barriers and facilitators to intervention success. Review evidence (N=49 papers) informed the intervention’s Guiding Principles, theory-based behavioural analysis and logic model. The intervention was optimised based on feedback on a prototype intervention through interviews (N=96) with cancer survivors and focus groups with NHS staff and cancer charity workers (N=31). Interviews with cancer survivors highlighted barriers to engagement, such as concerns about physical activity worsening fatigue. Focus groups highlighted concerns about support appointment length and how to support distressed participants. Feedback informed intervention modifications, to maximise acceptability, feasibility and likelihood of behaviour change. Our systematic method for understanding user views enabled us to anticipate and address important barriers to engagement. This methodology may be useful to others developing digital interventions

    Time-Stratified Case Crossover Study of the Association of Outdoor Ambient Air Pollution With the Risk of Acute Myocardial Infarction in the Context of Seasonal Exposure to the Southeast Asian Haze Problem

    Get PDF
    Background-—Prior studies have demonstrated the association of air pollution with cardiovascular deaths. Singapore experiences seasonal transboundary haze. We investigated the association between air pollution and acute myocardial infarction (AMI) incidence in Singapore. Methods and Results-—We performed a time-stratified case-crossover study on all AMI cases in the Singapore Myocardial Infarction Registry (2010–2015). Exposure on days where AMI occurred (case days) were compared with the exposure on days where AMI did not occur (control days). Control days were chosen on the same day of the week earlier and later in the same month and year. We fitted conditional Poisson regression models to daily AMI incidence to include confounders such as ambient temperature, rainfall, wind-speed, and Pollutant Standards Index. We assessed relationships between AMI incidence and Pollutant Standards Index in the entire cohort and subgroups of individual-level characteristics. There were 53 948 cases. Each 30-unit increase in Pollutant Standards Index was association with AMI incidence (incidence risk ratio [IRR] 1.04, 95% CI 1.03–1.06). In the subgroup of ST-segment–elevation myocardial infarction the IRR was 1.00, 95% CI 0.98 to 1.03, while for non–ST-segment– elevation myocardial infarction, the IRR was 1.08, 95% CI 1.05 to 1.10. Subgroup analyses showed generally significant. Moderate/ unhealthy Pollutant Standards Index showed association with AMI occurrence with IRR 1.08, 95% CI 1.05 to 1.11 and IRR 1.09, 95% CI 1.01 to 1.18, respectively. Excess risk remained elevated through the day of exposure and for >2 years after. Conclusions-—We found an effect of short-term air pollution on AMI incidence, especially non–ST-segment–elevation myocardial infarction and inpatient AMI. These findings have public health implications for primary prevention and emergency health services during haze

    Properties of Graphene: A Theoretical Perspective

    Full text link
    In this review, we provide an in-depth description of the physics of monolayer and bilayer graphene from a theorist's perspective. We discuss the physical properties of graphene in an external magnetic field, reflecting the chiral nature of the quasiparticles near the Dirac point with a Landau level at zero energy. We address the unique integer quantum Hall effects, the role of electron correlations, and the recent observation of the fractional quantum Hall effect in the monolayer graphene. The quantum Hall effect in bilayer graphene is fundamentally different from that of a monolayer, reflecting the unique band structure of this system. The theory of transport in the absence of an external magnetic field is discussed in detail, along with the role of disorder studied in various theoretical models. We highlight the differences and similarities between monolayer and bilayer graphene, and focus on thermodynamic properties such as the compressibility, the plasmon spectra, the weak localization correction, quantum Hall effect, and optical properties. Confinement of electrons in graphene is nontrivial due to Klein tunneling. We review various theoretical and experimental studies of quantum confined structures made from graphene. The band structure of graphene nanoribbons and the role of the sublattice symmetry, edge geometry and the size of the nanoribbon on the electronic and magnetic properties are very active areas of research, and a detailed review of these topics is presented. Also, the effects of substrate interactions, adsorbed atoms, lattice defects and doping on the band structure of finite-sized graphene systems are discussed. We also include a brief description of graphane -- gapped material obtained from graphene by attaching hydrogen atoms to each carbon atom in the lattice.Comment: 189 pages. submitted in Advances in Physic

    Smc5/6 coordinates formation and resolution of joint molecules with chromosome morphology to ensure meiotic divisions

    Get PDF
    During meiosis, Structural Maintenance of Chromosome (SMC) complexes underpin two fundamental features of meiosis: homologous recombination and chromosome segregation. While meiotic functions of the cohesin and condensin complexes have been delineated, the role of the third SMC complex, Smc5/6, remains enigmatic. Here we identify specific, essential meiotic functions for the Smc5/6 complex in homologous recombination and the regulation of cohesin. We show that Smc5/6 is enriched at centromeres and cohesin-association sites where it regulates sister-chromatid cohesion and the timely removal of cohesin from chromosomal arms, respectively. Smc5/6 also localizes to recombination hotspots, where it promotes normal formation and resolution of a subset of joint-molecule intermediates. In this regard, Smc5/6 functions independently of the major crossover pathway defined by the MutLγ complex. Furthermore, we show that Smc5/6 is required for stable chromosomal localization of the XPF-family endonuclease, Mus81-Mms4Eme1. Our data suggest that the Smc5/6 complex is required for specific recombination and chromosomal processes throughout meiosis and that in its absence, attempts at cell division with unresolved joint molecules and residual cohesin lead to severe recombination-induced meiotic catastroph

    Reduction of Natural Killer but Not Effector CD8 T Lymphoyctes in Three Consecutive Cases of Severe/Lethal H1N1/09 Influenza A Virus Infection

    Get PDF
    Background: The cause of severe disease in some patients infected with pandemic influenza A virus is unclear. Methodology/Principal Findings: We present the cellular immunology profile in the blood, and detailed clinical (and postmortem) findings of three patients with rapidly progressive infection, including a pregnant patient who died. The striking finding is of reduction in natural killer (NK) cells but preservation of activated effector CD8 T lymphocytes; with viraemia in the patient who had no NK cells. Comparison with control groups suggests that the reduction of NK cells is unique to these severely ill patients. Conclusion/Significance: Our report shows markedly reduced NK cells in the three patients that we sampled and raises the hypothesis that NK may have a more significant role than T lymphocytes in controlling viral burden when the host is confronted with a new influenza A virus subtype
    corecore