36,430 research outputs found

    Universal scale factors relating mesonic fields and quark operators

    Get PDF
    Scale factor matrices relating mesonic fields in chiral Lagrangians and quark-level operators of QCD sum-rules are shown to be constrained by chiral symmetry, resulting in universal scale factors for each chiral nonet. Built upon this interplay between chiral Lagrangians and QCD sum-rules, the scale factors relating the a0a_0 isotriplet scalar mesons to their underlying quark composite field were recently determined. It is shown that the same technique when applied to K0∗K_0^* isodoublet scalars reproduces the same scale factors, confirming the universality property and further validating this connection between chiral Lagrangians and QCD sum-rules which can have nontrivial impacts on our understanding of the low-energy QCD, in general, and the physics of scalar mesons in particular.Comment: 5 pages, 1 figure. arXiv admin note: text overlap with arXiv:1909.0724

    Biodegradable Polylactic Acid (PLA) Microstructures for Scaffold Applications

    Get PDF
    In this research, we present a simple and cost effective soft lithographic process to fabricate PLA scaffolds for tissue engineering. In which, the negative photoresist JSR THB-120N was spun on a glass subtract followed by conventional UV lithographic processes to fabricate the master to cast the PDMS elastomeric mold. A thin poly(vinyl alcohol) (PVA) layer was used as a mode release such that the PLA scaffold can be easily peeled off. The PLA precursor solution was then cast onto the PDMS mold to form the PLA microstructures. After evaporating the solvent, the PLA microstructures can be easily peeled off from the PDMS mold. Experimental results show that the desired microvessels scaffold can be successfully transferred to the biodegradable polymer PLA.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/EDA-Publishing

    Equilibrium spin pulsars unite neutron star populations

    Full text link
    Many pulsars are formed with a binary companion from which they can accrete matter. Torque exerted by accreting matter can cause the pulsar spin to increase or decrease, and over long times, an equilibrium spin rate is achieved. Application of accretion theory to these systems provides a probe of the pulsar magnetic field. We compare the large number of recent torque measurements of accreting pulsars with a high-mass companion to the standard model for how accretion affects the pulsar spin period. We find that many long spin period (P > 100 s) pulsars must possess either extremely weak (B < 10^10 G) or extremely strong (B > 10^14 G) magnetic fields. We argue that the strong-field solution is more compelling, in which case these pulsars are near spin equilibrium. Our results provide evidence for a fundamental link between pulsars with the slowest spin periods and strong magnetic fields around high-mass companions and pulsars with the fastest spin periods and weak fields around low-mass companions. The strong magnetic fields also connect our pulsars to magnetars and strong-field isolated radio/X-ray pulsars. The strong field and old age of our sources suggests their magnetic field penetrates into the superconducting core of the neutron star.Comment: 6 pages, 4 figures; to appear in MNRA

    Estimating Black Hole Masses in Active Galaxies Using the Halpha Emission Line

    Full text link
    It has been established that virial masses for black holes in low-redshift active galaxies can be estimated from measurements of the optical continuum strength and the width of the broad Hbeta line. Under various circumstances, however, both of these quantities can be challenging to measure or can be subject to large systematic uncertainties. To mitigate these difficulties, we present a new method for estimating black hole masses. From analysis of a new sample of broad-line active galactic nuclei, we find that Halpha luminosity scales almost linearly with optical continuum luminosity and that a strong correlation exists between Halpha and Hbeta line widths. These two empirical correlations allow us to translate the standard virial mass system to a new one based solely on observations of the broad Halpha emission line.Comment: to appear in Apj; 8 pages; 5 figures; uses emulateapj5.st

    Kinematics of Circumgalactic Gas: Feeding Galaxies and Feedback

    Full text link
    We present observations of 50 pairs of redshift z ~ 0.2 star-forming galaxies and background quasars. These sightlines probe the circumgalactic medium (CGM) out to half the virial radius, and we describe the circumgalactic gas kinematics relative to the reference frame defined by the galactic disks. We detect halo gas in MgII absorption, measure the equivalent-width-weighted Doppler shifts relative to each galaxy, and find that the CGM has a component of angular momentum that is aligned with the galactic disk. No net counter-rotation of the CGM is detected within 45 degrees of the major axis at any impact parameter. The velocity offset of the circumgalactic gas correlates with the projected rotation speed in the disk plane out to disk radii of roughly 70 kpc. We confirm previous claims that the MgII absorption becomes stronger near the galactic minor axis and show that the equivalent width correlates with the velocity range of the absorption. We cannot directly measure the location of any absorber along the sightline, but we explore the hypothesis that individual velocity components can be associated with gas orbiting in the disk plane or flowing radially outward in a conical outflow. We conclude that centrifugal forces partially support the low-ionization gas and galactic outflows kinematically disturb the CGM producing excess absorption. Our results firmly rule out schema for the inner CGM that lack rotation and suggest that angular momentum as well as galactic winds should be included in any viable model for the low-redshift CGM.Comment: Accepted for publication in the Astrophysical Journa

    Numerical analysis of the Iosipescu specimen for composite materials

    Get PDF
    A finite element analysis of the Iosipescu shear tests for unidirectional and cross-ply composites is presented. It is shown that an iterative analysis procedure must be used to model the fixture-specimen kinematics. The correction factors which are needed to compensate for the nonuniformity of stress distribution in calculating shear modulus are shown to be dependent on the material orthotropic ratio and the finite element loading models. Test section strain distributions representative of typical graphite-epoxy specimens are also presented

    Spin period change and the magnetic fields of neutron stars in Be X-ray binaries in the Small Magellanic Cloud

    Full text link
    We report on the long-term average spin period, rate of change of spin period and X-ray luminosity during outbursts for 42 Be X-ray binary systems in the Small Magellanic Cloud. We also collect and calculate parameters of each system and use these data to determine that all systems contain a neutron star which is accreting via a disc, rather than a wind, and that if these neutron stars are near spin equilibrium, then over half of them, including all with spin periods over about 100 s, have magnetic fields over the quantum critical level of 4.4x10^13 G. If these neutron stars are not close to spin equilibrium, then their magnetic fields are inferred to be much lower, of the order of 10^6-10^10 G, comparable to the fields of neutron stars in low-mass X-ray binaries. Both results are unexpected and have implications for the rate of magnetic field decay and the isolated neutron star population.Comment: 22 pages, 50 figures; to appear in MNRA
    • …
    corecore