221 research outputs found

    Evaluation of mavacamten in symptomatic patients with nonobstructive hypertrophic cardiomyopathy

    Get PDF
    BACKGROUND: Patients with nonobstructive hypertrophic cardiomyopathy (nHCM) often experience a high burden of symptoms; however, there are no proven pharmacological therapies. By altering the contractile mechanics of the cardiomyocyte, myosin inhibitors have the potential to modify pathophysiology and improve symptoms associated with HCM. OBJECTIVES: MAVERICK-HCM (Mavacamten in Adults With Symptomatic Non-Obstructive Hypertrophic Cardiomyopathy) explored the safety and efficacy of mavacamten, a first-in-class reversible inhibitor of cardiac-specific myosin, in nHCM. METHODS: The MAVERICK-HCM trial was a multicenter, double-blind, placebo-controlled, dose-ranging phase II study in adults with symptomatic nHCM (New York Heart Association functional class II/III), left ventricular ejection fraction (LVEF) ≥55%, and N-terminal pro-B-type natriuretic peptide (NT-proBNP) ≥300 pg/ml. Participants were randomized 1:1:1 to mavacamten at a pharmacokinetic-adjusted dose (targeting plasma levels of 200 or 500 ng/ml), or placebo for 16 weeks, followed by an 8-week washout. Initial dose was 5 mg daily with 1 dose titration at week 6. RESULTS: Fifty-nine participants were randomized (19, 21, 19 patients to 200 ng/ml, 500 ng/ml, placebo, respectively). Their mean age was 54 years, and 58% were women. Serious adverse events occurred in 10% of participants on mavacamten and in 21% participants on placebo. Five participants on mavacamten had reversible reduction in LVEF ≤45%. NT-proBNP geometric mean decreased by 53% in the pooled mavacamten group versus 1% in the placebo group, with geometric mean differences of -435 and -6 pg/ml, respectively (p = 0.0005). Cardiac troponin I (cTnI) geometric mean decreased by 34% in the pooled mavacamten group versus a 4% increase in the placebo group, with geometric mean differences of -0.008 and 0.001 ng/ml, respectively (p = 0.009). CONCLUSIONS: Mavacamten, a novel myosin inhibitor, was well tolerated in most subjects with symptomatic nHCM. Furthermore, treatment was associated with a significant reduction in NT-proBNP and cTnI, suggesting improvement in myocardial wall stress. These results set the stage for future studies of mavacamten in this patient population using clinical parameters, including LVEF, to guide dosing. (A Phase 2 Study of Mavacamten in Adults With Symptomatic Non-Obstructive Hypertrophic Cardiomyopathy [MAVERICK-HCM]; NCT03442764)

    Meta-analysis of Penetrance and Systematic Review on Transition to Disease in Genetic Hypertrophic Cardiomyopathy

    Get PDF
    BACKGROUND: Hypertrophic cardiomyopathy (HCM) is characterized by unexplained left ventricular hypertrophy (LVH) and is classically caused by pathogenic or likely pathogenic variants (P/LP) in genes encoding sarcomere proteins. Not all subclinical variant carriers will manifest clinically overt disease, as penetrance (proportion of G+ who develop disease) is variable, age-dependent, and not reliably predicted. METHODS: A systematic search of the literature was performed. We employed random effects generalized linear mixed model meta-analyses to contrast the cross-sectional prevalence and penetrance of sarcomere genes in two different contexts: clinically-based studies on patients and families with HCM versus population/community-based studies. Longitudinal family/clinical studies were additionally analyzed to investigate the rate of phenotypic conversion from subclinical to overt HCM during follow-up. FINDINGS: 455 full text manuscripts were assessed. In family/clinical studies, the prevalence of sarcomere variants in patients diagnosed with HCM was 34%. The penetrance across all genes in non-proband relatives carrying P/LP variants identified during cascade screening was 57% (95% confidence interval [CI] [52,63]) and the mean age of HCM diagnosis was 38 years (95% CI [36, 40]). Penetrance varied from ~32% for myosin light chain (MYL3) to ~55% for myosin binding protein C (MYBPC3), ~60% troponin T (TNNT2) and troponin I (TNNI3), and ~65% for myosin heavy chain (MYH7). Population-based genetic studies demonstrate that P/LP sarcomere variants are present in the background population, but at a low prevalence of <1%. The penetrance of HCM in incidentally identified P/LP variant carriers was also substantially lower; approximatively 11%, ranging from 0% in Atherosclerosis Risk in Communities to 18% in UK Biobank. In longitudinal family studies, the pooled phenotypic conversion across all genes was 15% over an average of ~8 years of follow up, starting from a mean age of ~16 years. However, short-term gene-specific phenotypic conversion varied between ~12% for MYBPC3 to ~23% for MYH7. CONCLUSIONS: The penetrance of P/LP variants is highly variable and influenced by currently undefined and context-dependent genetic and environmental factors. Additional longitudinal studies are needed to improve understanding of true lifetime penetrance in families and in the community, and to identify drivers of the transition from subclinical to overt HCM

    Valsartan for attenuating disease evolution in early sarcomeric hypertrophic cardiomyopathy: the design of the Valsartan for Attenuating Disease Evolution in Early Sarcomeric Hypertrophic Cardiomyopathy (VANISH) trial

    Get PDF
    Background: Hypertrophic cardiomyopathy (HCM) is often caused by sarcomere gene mutations, resulting in left ventricular hypertrophy (LVH), myocardial fibrosis, and increased risk of sudden cardiac death and heart failure. Studies in mouse models of sarcomeric HCM demonstrated that early treatment with an angiotensin receptor blocker (ARB) reduced development of LVH and fibrosis. In contrast, prior human studies using ARBs for HCM have targeted heterogeneous adult cohorts with well-established disease. The VANISH trial is testing the safety and feasibility of disease-modifying therapy with an ARB in genotyped HCM patients with early disease. Methods: A randomized, placebo-controlled, double-blind clinical trial is being conducted in sarcomere mutation carriers, 8 to 45 years old, with HCM and no/minimal symptoms, or those with early phenotypic manifestations but no LVH. Participants are randomly assigned to receive valsartan 80 to 320 mg daily (depending on age and weight) or placebo. The primary endpoint is a composite of 9 z-scores in domains representing myocardial injury/hemodynamic stress, cardiac morphology, and function. Total z-scores reflecting change from baseline to final visits will be compared between treatment groups. Secondary endpoints will assess the impact of treatment on mutation carriers without LVH, and analyze the influence of age, sex, and genotype. Conclusions: The VANISH trial is testing a new strategy of disease modification for treating sarcomere mutation carriers with early HCM, and those at risk for its development. In addition, further insight into disease mechanisms, response to therapy, and phenotypic evolution will be gained

    Genetic Evaluation of Cardiomyopathy - a Heart Failure Society of America Practice Guideline

    Get PDF
    This guideline describes the approach and expertise needed for the genetic evaluation of cardiomyopathy. First published in 2009 by the Heart Failure Society of America (HFSA), this guidance has now been updated in collaboration with the American College of Medical Genetics and Genomics (ACMG). The writing group, composed of cardiologists and genetics professionals with expertise in adult and pediatric cardiomyopathy, reflects the emergence and increased clinical activity devoted to cardiovascular genetic medicine. The genetic evaluation of cardiomyopathy is a rapidly emerging key clinical priority, as high throughput sequencing is now feasible for clinical testing, and conventional interventions can improve survival, reduce morbidity, and enhance quality of life. Moreover, specific interventions may be guided by genetic analysis. A systematic approach is recommended: always a comprehensive family history; an expert phenotypic evaluation of the proband and at-risk family members to confirm a diagnosis and guide genetic test selection and interpretation; referral to expert centers as needed; genetic testing, with pre- and post-test genetic counseling; and specific guidance as indicated for drug and device therapies. The evaluation of infants and children demands special expertise. The approach to manage secondary and incidental sequence findings as recommended by the ACMG is provided

    Sex-specific cardiac remodeling in early and advanced stages of hypertrophic cardiomyopathy

    Get PDF
    Hypertrophic cardiomyopathy (HCM) is the most frequent genetic cardiac disease with a prevalence of 1:500 to 1:200. While most patients show obstructive HCM and a relatively stable clinical phenotype (stage II), a small group of patients progresses to end-stage HCM (stage IV) within a relatively brie

    Myocardial fibrosis as an early manifestation of hypertrophic cardiomyopathy

    Get PDF
    BACKGROUND: Myocardial fibrosis is a hallmark of hypertrophic cardiomyopathy and a proposed substrate for arrhythmias and heart failure. In animal models, profibrotic genetic pathways are activated early, before hypertrophic remodeling. Data showing early profibrotic responses to sarcomere-gene mutations in patients with hypertrophic cardiomyopathy are lacking. METHODS: We used echocardiography, cardiac magnetic resonance imaging (MRI), and serum biomarkers of collagen metabolism, hemodynamic stress, and myocardial injury to evaluate subjects with hypertrophic cardiomyopathy and a confirmed genotype. RESULTS: The study involved 38 subjects with pathogenic sarcomere mutations and overt hypertrophic cardiomyopathy, 39 subjects with mutations but no left ventricular hypertrophy, and 30 controls who did not have mutations. Levels of serum C-terminal propeptide of type I procollagen (PICP) were significantly higher in mutation carriers without left ventricular hypertrophy and in subjects with overt hypertrophic cardiomyopathy than in controls (31% and 69% higher, respectively; P<0.001). The ratio of PICP to C-terminal telopeptide of type I collagen was increased only in subjects with overt hypertrophic cardiomyopathy, suggesting that collagen synthesis exceeds degradation. Cardiac MRI studies showed late gadolinium enhancement, indicating myocardial fibrosis, in 71% of subjects with overt hypertrophic cardiomyopathy but in none of the mutation carriers without left ventricular hypertrophy. CONCLUSIONS: Elevated levels of serum PICP indicated increased myocardial collagen synthesis in sarcomere-mutation carriers without overt disease. This profibrotic state preceded the development of left ventricular hypertrophy or fibrosis visible on MRI. (Funded by the National Institutes of Health and others.

    Hypertrophic cardiomyopathy in myosin-binding protein C (MYBPC3) Icelandic founder mutation carriers

    Get PDF
    Objective: The myosin-binding protein C (MYBPC3) c.927-2A>G founder mutation accounts for >90% of sarcomeric hypertrophic cardiomyopathy (HCM) in Iceland. This cross-sectional observational study explored the penetrance and phenotypic burden among carriers of this single, prevalent founder mutation. Methods: We studied 60 probands with HCM caused by MYBPC3 c.927-2A>G and 225 first-degree relatives. All participants underwent comprehensive clinical evaluation and relatives were genotyped. Results: Genetic and clinical evaluation of relatives identified 49 genotype-positive (G+) relatives with left ventricular hypertrophy (G+/LVH+), 59 G+without LVH (G+/LVH−) and 117 genotype-negative relatives (unaffected). Compared with HCM probands, G+/ LVH+ relatives were older at HCM diagnosis, had less LVH, a less prevalent diastolic dysfunction, fewer ECG abnormalities, lower serum N-terminal pro-B-type natriuretic peptide (NT-proBNP) and high-sensitivity cardiac troponin I levels, and fewer symptoms. The penetrance of HCM was influenced by age and sex; specifically, LVH was present in 39% of G+males but only 9% of G+females under age 40 years (p=0.015), versus 86% and 83%, respectively, after age 60 (p=0.89). G+/LVH− subjects had normal wall thicknesses, diastolic function and NT-proBNP levels, but subtle changes in LV geometry and more ECG abnormalities than their unaffected relatives. Conclusions: Phenotypic expression of the Icelandic MYBPC3 founder mutation varies by age, sex and proband status. Men are more likely to have LVH at a younger age, and disease manifestations were more prominent in probands than in relatives identified via family screening. G+/LVH− individuals had subtle clinical differences from unaffected relatives well into adulthood, indicating subclinical phenotypic expression of the pathogenic mutation

    The optimization of in vitro high-throughput chemical lysis of Escherichia coli. Application to ACP domain of the polyketide synthase ppsC from Mycobacterium tuberculosis

    Get PDF
    Protein production in Escherichia coli involves high-level expression in a culture, followed by harvesting of the cells and finally their disruption, or lysis, to release the expressed proteins. We compare three high-throughput chemical lysis methods to sonication, using a robotic platform and methodologies developed in our laboratory [1]. Under the same expression conditions, all lysis methods varied in the degree of released soluble proteins. With a set of 96 test proteins, we used our split GFP to quantify the soluble and insoluble protein fractions after lysis. Both the amount of soluble protein and the percentage recovered in the soluble fraction using SoluLyse® were well correlated with sonication. Two other methods, Bugbuster® and lysozyme, did not correlate well with sonication. Considering the effects of lysis methods on protein solubility is especially important when accurate protein solubility measurements are needed, for example, when testing adjuvants, growth media, temperature, or when establishing the effects of truncation or sequence variation on protein stability
    corecore