6 research outputs found
CIFOR's management information system: from concept to implementation
This study describes the concept of a management information system (MIS) developed for the Center for International Forestry Research. A definition of MIS and the institutional background are given, followed by a description of the organisational structure, definition of MIS requirements and the procedures and results of an information requirements survey. The core of the study is the design of the MIS which focuses on outputs, inputs, processing, storage and personnel as key elements of the system. Issues related to implementation and maintenance of the proposed system are discussed and key databases described. Emphasis is given to personnel, soft- and hardware requirements, system architecture, training and procedural aspects. The study concludes with a discussion of project management requirements, critical success factors, monitoring and evaluation procedures, and the potential generalisation of the concept
Structures of exopolysaccharides involved in receptor-mediated perception of <i>Mesorhizobium loti</i> by <i>Lotus japonicus</i>
In the symbiosis formed between Mesorhizobium loti strain R7A and Lotus japonicus Gifu, rhizobial exopolysaccharide (EPS) plays an important role in infection thread formation. Mutants of strain R7A affected in early exopolysaccharide biosynthetic steps form nitrogen-fixing nodules on L. japonicus Gifu after a delay, whereas mutants affected in mid or late biosynthetic steps induce uninfected nodule primordia. Recently, it was shown that a plant receptor-like kinase, EPR3, binds low molecular mass exopolysaccharide from strain R7A to regulate bacterial passage through the plant's epidermal cell layer (Kawaharada, Y., Kelly, S., Nielsen, M. W., Hjuler, C. T., Gysel, K., Muszyński, A., Carlson, R. W., Thygesen, M. B., Sandal, N., Asmussen, M. H., Vinther, M., Andersen, S. U., Krusell, L., Thirup, S., Jensen, K. J., et al. (2015) Nature 523, 308–312). In this work, we define the structure of both high and low molecular mass exopolysaccharide from R7A. The low molecular mass exopolysaccharide produced by R7A is a monomer unit of the acetylated octasaccharide with the structure (2,3/3-OAc)β-d-RibfA-(1→4)-α-d-GlcpA-(1→4)-β-d-Glcp-(1→6)-(3OAc)β-d-Glcp-(1→6)-*[(2OAc)β-d-Glcp-(1→4)-(2/3OAc)β-d-Glcp-(1→4)-β-d-Glcp-(1→3)-β-d-Galp]. We propose it is a biosynthetic constituent of high molecular mass EPS polymer. Every new repeating unit is attached via its reducing-end β-d-Galp to C-4 of the fourth glucose (asterisked above) of the octasaccharide, forming a branch. The O-acetylation occurs on the four glycosyl residues in a non-stoichiometric ratio, and each octasaccharide subunit is on average substituted with three O-acetyl groups. The availability of these structures will facilitate studies of EPR3 receptor binding of symbiotically compatible and incompatible EPS and the positive or negative consequences on infection by the M. loti exo mutants synthesizing such EPS variants
Epidermal LysM receptor ensures robust symbiotic signalling in Lotus japonicus
International audienc
Recommended from our members
An unbiased ranking of murine dietary models based on their proximity to human metabolic dysfunction-associated steatotic liver disease (MASLD).
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as non-alcoholic fatty liver disease, encompasses steatosis and metabolic dysfunction-associated steatohepatitis (MASH), leading to cirrhosis and hepatocellular carcinoma. Preclinical MASLD research is mainly performed in rodents; however, the model that best recapitulates human disease is yet to be defined. We conducted a wide-ranging retrospective review (metabolic phenotype, liver histopathology, transcriptome benchmarked against humans) of murine models (mostly male) and ranked them using an unbiased MASLD 'human proximity score' to define their metabolic relevance and ability to induce MASH-fibrosis. Here, we show that Western diets align closely with human MASH; high cholesterol content, extended study duration and/or genetic manipulation of disease-promoting pathways are required to intensify liver damage and accelerate significant (F2+) fibrosis development. Choline-deficient models rapidly induce MASH-fibrosis while showing relatively poor translatability. Our ranking of commonly used MASLD models, based on their proximity to human MASLD, helps with the selection of appropriate in vivo models to accelerate preclinical research.This study has been conducted as part of the Preclinical work package of the LITMUS (Liver Investigation: Testing Marker Utility in Steatohepatitis) project. The LITMUS study is a large multi-centre study aiming to evaluate Non-Alcoholic Fatty Liver Disease biomarkers. The Innovative Medicines Initiative 2 (IMI2) Joint Undertaking under Grant Agreement 777377, funded the LITMUS study. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation program and EFPIA. EMBL-EBI Core funding supported EP and IK through funding and computing resources from EMBL-EBI. Funding from the MRC (Medical Research Council) supported IK. M.V. is supported by the University of Bari (Horizon Europe Seed cod. id. S06-miRNASH), the Foundation for Liver Research (Intramural Funding), Associazione Italiana Ricerca sul Cancro (IG2022 Grant n. 27521) and Ministry of University and Research on Next Generation EU Funds [COD: P202222FCC, CUP: H53D23009960001, D.D. MUR 1366 (01-09-2023), Title: “System Biology” approaches in HCV Patients with Residual Hepatic Steatosis after Viral Eradication; Cod PE00000003, CUP: H93C22000630001, DD MUR 1550, Title: “ON Foods - Research and innovation network on food and nutrition Sustainability, Safety and Security – Working ON Foods”; Cod: CN00000041, CUP: H93C22000430007, Title PNRR “National Center for Gene Therapy and Drugs based on RNA Technology”, M4C2-Investment 1.4; Code: CN00000013, CUP: H93C22000450007, Title PNNR: “National Centre for HPC, Big Data and Quantum Computing”). A.V-P. is funded by MRC MDU, MRC Metabolic Diseases Unit (MC_UU_00014/5): Disease Model Core, Biochemistry Assay Lab, Histology Core and British Heart Foundation. F.O. is funded by UK Medical Research Council Program Grants MR/K0019494/1 and MR/R023026/1. C.M.P.R. is supported by Fundação para a Ciência e Tecnologia (PTDC/MED-FAR/3492/2021) and La Caixa Foundation (LCF/PR/HR21/52410028). Q.M.A. is supported by the Newcastle NIHR Biomedical Research Centre. S.L.F. and W.S. are supported by the NIH (NIH R01 DK128289; NCI 5P30CA196521-08 to S.L.F.; NIH R01 DK136016 to W.S.). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript