79 research outputs found

    Superimposed tissue formation in human aortic valve disease: differences between regurgitant and stenotic valves

    Get PDF
    The formation of superimposed tissue (SIT), a layer on top of the original valve leaflet, has been described in patients with mitral regurgitation as a major contributor to valve thickening and possibly as a result of increased mechanical stresses. However, little is known whether SIT formation also occurs in aortic valve disease. We therefore performed histological analyses to assess SIT formation in aortic valve leaflets (n = 31) from patients with aortic stenosis (n = 17) or aortic regurgitation due to aortic dilatation (n = 14). SIT was observed in both stenotic and regurgitant aortic valves, both on the ventricular and aortic sides, but with significant differences in distribution and composition. Regurgitant aortic valves showed more SIT formation in the free edge, leading to a thicker leaflet at that level, while stenotic aortic valves showed relatively more SIT formation on the aortic side of the body part of the leaflet. SIT appeared to be a highly active area, as determined by large populations of myofibroblasts, with varied extracellular matrix composition (higher collagen content in stenotic valves). Further, the identification of the SIT revealed the presence of foldings of the free edge in the diseased aortic valves. Insights into SIT regulation may further help in understanding the pathophysiology of aortic valve disease and potentially lead to the development of new therapeutic treatments.Cardiolog

    Aortic valve visualization and pressurization device: a novel device for intraoperative evaluation of aortic valve repair procedures

    Get PDF
    OBJECTIVESAortic valve repair procedures are technically challenging, and current intraoperative evaluation methods often fail to predict the final echocardiographic result. We have developed a novel intraoperative aortic valve visualization and pressurization (AVP) device, enabling valve inspection under physiological conditions, and measuring aortic valve insufficiency (AI) during cardioplegic arrest.METHODSThe AVP device is attached to the (neo)aorta, after any type of aortic valve repair, while the heart is arrested. The root is pressurized (60–80 mmHg) using a saline solution and an endoscope is introduced. The valve is inspected, and the amount of valvular leakage is measured. Postoperative ‘gold standard’ transesophageal echocardiogram measurements of AI are performed and compared against regurgitation volume measured.RESULTSIn 24 patients undergoing valve-sparing root replacement, the AVP device was used. In 22 patients, postoperative echocardiographic AI was ≤ grade 1. The median leakage was 90 ml/min, IQR 60–120 ml/min. In 3 patients, additional adjustments after visual inspection was performed. In 2 patients, with complex anatomy, the valve was replaced. In one, after evaluation with the device, there was undesirable result visually and residual AI of 330 ml/min, and in another, 260 ml/min residual AI was measured and valve restriction on visual inspection.CONCLUSIONSThe novel AVP device enables intraoperative evaluation of the valve under physiological conditions, while still on arrested heart, and allows for targeted adjustments. The AVP device can be an important aid for intraoperative evaluation of the aortic valve, during valve repair and valve-sparing procedures, thereby making the operative result more predictable and the operation more efficient.Thoracic Surger

    Massive expansion and cryopreservation of functional human induced pluripotent stem cell-derived cardiomyocyte

    Get PDF
    Since the discovery of human induced pluripotent stem cells (hiPSCs), numerous strategies have been established to efficiently derive cardiomyocytes from hiPSCs (hiPSC-CMs). Here, we describe a cost-effective strategy for the subsequent massive expansion (>250-fold) of high-purity hiPSC-CMs relying on two aspects: removal of cell-cell contacts and small-molecule inhibition with CHIR99021. The protocol maintains CM functionality, allows cryopreservation, and the cells can be used in downstream assays such as disease modeling, drug and toxicity screening, and cell therapy. For complete details on the use and execution of this protocol, please refer to Buikema (2020)

    Anti-fibrotic Effects of Cardiac Progenitor Cells in a 3D-Model of Human Cardiac Fibrosis

    Get PDF
    Cardiac fibroblasts play a key role in chronic heart failure. The conversion from cardiac fibroblast to myofibroblast as a result of cardiac injury, will lead to excessive matrix deposition and a perpetuation of pro-fibrotic signaling. Cardiac cell therapy for chronic heart failure may be able to target fibroblast behavior in a paracrine fashion. However, no reliable human fibrotic tissue model exists to evaluate this potential effect of cardiac cell therapy. Using a gelatin methacryloyl hydrogel and human fetal cardiac fibroblasts (hfCF), we created a 3D in vitro model of human cardiac fibrosis. This model was used to study the possibility to modulate cellular fibrotic responses. Our approach demonstrated paracrine inhibitory effects of cardiac progenitor cells (CPC) on both cardiac fibroblast activation and collagen synthesis in vitro and revealed that continuous cross-talk between hfCF and CPC seems to be indispensable for the observed anti-fibrotic effect

    High Serum Uric Acid Increases the Risk for Nonalcoholic Fatty Liver Disease: A Prospective Observational Study

    Get PDF
    Nonalcoholic fatty liver disease (NAFLD) is a common form of chronic liver disease, and serum uric acid is observed to be significantly elevated in NAFLD patients. However, whether this elevation is causal, a bystander, or a consequence of NAFLD remains unclear. We performed a population-based prospective study among the employees of Zhenhai Refining & Chemical Company Ltd., Ningbo, China to investigate whether the elevation of serum uric acid has a casual role for NAFLD. A total of 6890 initially NAFLD-free subjects were followed up for 3 years. Overall, 11.80% (813/6890) subjects developed NAFLD over 3 years of follow-up. The cumulative incidence of NAFLD increased with progressively higher baseline serum uric acid levels (the cumulative incidence was 7.2%, 9.5%, 11.5%, 13.8%, and 17.2% in quintile 1, quintile 2, 3, 4 and 5, respectively; P value for trend <0.001). Cox proportional hazards regression analyses showed that serum uric acid levels were independently and positively associated with the risk for incident NAFLD; the age-, gender- and metabolic syndrome adjusted hazard ratio (95% CI) for the subjects in quintile 2, 3, 4 and 5 versus quintile 1 was 1.18 (0.91–1.54), 1.32 (1.03–1.70), 1.39 (1.09–1.78) and 1.50 (1.18–1.92), respectively. Taken together, our prospective observational study showed that elevation of serum uric acid levels independently predicts increase risk for incident NAFLD

    Light transmittance in human atrial tissue and transthoracic illumination in rats support translatability of optogenetic cardioversion of atrial fibrillation

    Get PDF
    Background: Optogenetics could offer a solution to the current lack of an ambulatory method for the rapid automated cardioversion of atrial fibrillation (AF), but key translational aspects remain to be studied. Objective: To investigate whether optogenetic cardioversion of AF is effective in the aged heart and whether sufficient light penetrates the human atrial wall. Methods: Atria of adult and aged rats were optogenetically modified to express light-gated ion channels (i.e., red-activatable channelrhodopsin), followed by AF induction and atrial illumination to determine the effectivity of optogenetic cardioversion. The irradiance level was determined by light transmittance measurements on human atrial tissue. Results: AF could be effectively terminated in the remodeled atria of aged rats (97%, n = 6). Subsequently, ex vivo experiments using human atrial auricles demonstrated that 565-nm light pulses at an intensity of 25 mW/mm(2) achieved the complete penetration of the atrial wall. Applying such irradiation onto the chest of adult rats resulted in transthoracic atrial illumination as evidenced by the optogenetic cardioversion of AF (90%, n = 4). Conclusion: Transthoracic optogenetic cardioversion of AF is effective in the aged rat heart using irradiation levels compatible with human atrial transmural light penetration.Thoracic Surger

    Intracellular proteomics and extracellular vesiculomics as a metric of disease recapitulation in 3D-bioprinted aortic valve arrays

    Get PDF
    In calcific aortic valve disease (CAVD), mechanosensitive valvular cells respond to fibrosis- and calcification-induced tissue stiffening, further driving pathophysiology. No pharmacotherapeutics are available to treat CAVD because of the paucity of (i) appropriate experimental models that recapitulate this complex environment and (ii) benchmarking novel engineered aortic valve (AV)–model performance. We established a biomaterial-based CAVD model mimicking the biomechanics of the human AV disease-prone fibrosa layer, three-dimensional (3D)–bioprinted into 96-well arrays. Liquid chromatography–tandem mass spectrometry analyses probed the cellular proteome and vesiculome to compare the 3D-bioprinted model versus traditional 2D monoculture, against human CAVD tissue. The 3D-bioprinted model highly recapitulated the CAVD cellular proteome (94% versus 70% of 2D proteins). Integration of cellular and vesicular datasets identified known and unknown proteins ubiquitous to AV calcification. This study explores how 2D versus 3D-bioengineered systems recapitulate unique aspects of human disease, positions multiomics as a technique for the evaluation of high throughput–based bioengineered model systems, and potentiates future drug discovery

    Lipoprotein(a) and Oxidized Phospholipids Promote Valve Calcification in Patients With Aortic Stenosis

    Get PDF
    BACKGROUND: Lipoprotein(a) [Lp(a)], a major carrier of oxidized phospholipids (OxPL), is associated with an increased incidence of aortic stenosis (AS). However, it remains unclear whether elevated Lp(a) and OxPL drive disease progression and are therefore targets for therapeutic intervention. OBJECTIVES: This study investigated whether Lp(a) and OxPL on apolipoprotein B-100 (OxPL-apoB) levels are associated with disease activity, disease progression, and clinical events in AS patients, along with the mechanisms underlying any associations. METHODS: This study combined 2 prospective cohorts and measured Lp(a) and OxPL-apoB levels in patients with AS (Vmax >2.0 m/s), who underwent baseline 18F-sodium fluoride (18F-NaF) positron emission tomography (PET), repeat computed tomography calcium scoring, and repeat echocardiography. In vitro studies investigated the effects of Lp(a) and OxPL on valvular interstitial cells. RESULTS: Overall, 145 patients were studied (68% men; age 70.3 ± 9.9 years). On baseline positron emission tomography, patients in the top Lp(a) tertile had increased valve calcification activity compared with those in lower tertiles (n = 79; 18F-NaF tissue-to-background ratio of the most diseased segment: 2.16 vs. 1.97; p = 0.043). During follow-up, patients in the top Lp(a) tertile had increased progression of valvular computed tomography calcium score (n = 51; 309 AU/year [interquartile range: 142 to 483 AU/year] vs. 93 AU/year [interquartile range: 56 to 296 AU/year; p = 0.015), faster hemodynamic progression on echocardiography (n = 129; 0.23 ± 0.20 m/s/year vs. 0.14 ± 0.20 m/s/year] p = 0.019), and increased risk for aortic valve replacement and death (n = 145; hazard ratio: 1.87; 95% CI: 1.13 to 3.08; p = 0.014), compared with lower tertiles. Similar results were noted with OxPL-apoB. In vitro, Lp(a) induced osteogenic differentiation of valvular interstitial cells, mediated by OxPL and inhibited with the E06 monoclonal antibody against OxPL. CONCLUSIONS: In patients with AS, Lp(a) and OxPL drive valve calcification and disease progression. These findings suggest lowering Lp(a) or inactivating OxPL may slow AS progression and provide a rationale for clinical trials to test this hypothesis

    Engineering a 3D-Bioprinted Model of Human Heart Valve Disease Using Nanoindentation-Based Biomechanics

    Get PDF
    In calcific aortic valve disease (CAVD), microcalcifications originating from nanoscale calcifying vesicles disrupt the aortic valve (AV) leaflets, which consist of three (biomechanically) distinct layers: the fibrosa, spongiosa, and ventricularis. CAVD has no pharmacotherapy and lacks in vitro models as a result of complex valvular biomechanical features surrounding resident mechanosensitive valvular interstitial cells (VICs). We measured layer-specific mechanical properties of the human AV and engineered a three-dimensional (3D)-bioprinted CAVD model that recapitulates leaflet layer biomechanics for the first time. Human AV leaflet layers were separated by microdissection, and nanoindentation determined layer-specific Young’s moduli. Methacrylated gelatin (GelMA)/methacrylated hyaluronic acid (HAMA) hydrogels were tuned to duplicate layer-specific mechanical characteristics, followed by 3D-printing with encapsulated human VICs. Hydrogels were exposed to osteogenic media (OM) to induce microcalcification, and VIC pathogenesis was assessed by near infrared or immunofluorescence microscopy. Median Young’s moduli of the AV layers were 37.1, 15.4, and 26.9 kPa (fibrosa/spongiosa/ventricularis, respectively). The fibrosa and spongiosa Young’s moduli matched the 3D 5% GelMa/1% HAMA UV-crosslinked hydrogels. OM stimulation of VIC-laden bioprinted hydrogels induced microcalcification without apoptosis. We report the first layer-specific measurements of human AV moduli and a novel 3D-bioprinted CAVD model that potentiates microcalcification by mimicking the native AV mechanical environment. This work sheds light on valvular mechanobiology and could facilitate high-throughput drug-screening in CAVD
    • …
    corecore