90 research outputs found
Diffusive Spreading of Chainlike Molecules on Surfaces
We study the diffusion and submonolayer spreading of chainlike molecules on
surfaces. Using the fluctuating bond model we extract the collective and tracer
diffusion coefficients D_c and D_t with a variety of methods. We show that
D_c(theta) has unusual behavior as a function of the coverage theta. It first
increases but after a maximum goes to zero as theta go to one. We show that the
increase is due to entropic repulsion that leads to steep density profiles for
spreading droplets seen in experiments. We also develop an analytic model for
D_c(theta) which agrees well with the simulations.Comment: 3 pages, RevTeX, 4 postscript figures, to appear in Phys. Rev.
Letters (1996
Non-Arrhenius Behavior of Surface Diffusion Near a Phase Transition Boundary
We study the non-Arrhenius behavior of surface diffusion near the
second-order phase transition boundary of an adsorbate layer. In contrast to
expectations based on macroscopic thermodynamic effects, we show that this
behavior can be related to the average microscopic jump rate which in turn is
determined by the waiting-time distribution W(t) of single-particle jumps at
short times. At long times, W(t) yields a barrier that corresponds to the
rate-limiting step in diffusion. The microscopic information in W(t) should be
accessible by STM measurements.Comment: 4 pages, Latex with RevTeX macro
Diffusion of gold nanoclusters on graphite
We present a detailed molecular-dynamics study of the diffusion and
coalescence of large (249-atom) gold clusters on graphite surfaces. The
diffusivity of monoclusters is found to be comparable to that for single
adatoms. Likewise, and even more important, cluster dimers are also found to
diffuse at a rate which is comparable to that for adatoms and monoclusters. As
a consequence, large islands formed by cluster aggregation are also expected to
be mobile. Using kinetic Monte Carlo simulations, and assuming a proper scaling
law for the dependence on size of the diffusivity of large clusters, we find
that islands consisting of as many as 100 monoclusters should exhibit
significant mobility. This result has profound implications for the morphology
of cluster-assembled materials
Brain iron accumulation in unexplained fetal and infant death victims with smoker mothers-The possible involvement of maternal methemoglobinemia
<p>Abstract</p> <p>Background</p> <p>Iron is involved in important vital functions as an essential component of the oxygen-transporting heme mechanism. In this study we aimed to evaluate whether oxidative metabolites from maternal cigarette smoke could affect iron homeostasis in the brain of victims of sudden unexplained fetal and infant death, maybe through the induction of maternal hemoglobin damage, such as in case of methemoglobinemia.</p> <p>Methods</p> <p>Histochemical investigations by Prussian blue reaction were made on brain nonheme ferric iron deposits, gaining detailed data on their localization in the brainstem and cerebellum of victims of sudden death and controls. The Gless and Marsland's modification of Bielschowsky's was used to identify neuronal cell bodies and neurofilaments.</p> <p>Results</p> <p>Our approach highlighted accumulations of blue granulations, indicative of iron positive reactions, in the brainstem and cerebellum of 33% of victims of sudden death and in none of the control group. The modified Bielschowsky's method confirmed that the cells with iron accumulations were neuronal cells.</p> <p>Conclusions</p> <p>We propose that the free iron deposition in the brain of sudden fetal and infant death victims could be a catabolic product of maternal methemoglobinemia, a biomarker of oxidative stress likely due to nicotine absorption.</p
- …