8 research outputs found

    DNA Microarrays for Identifying Fishes

    Get PDF
    In many cases marine organisms and especially their diverse developmental stages are difficult to identify by morphological characters. DNA-based identification methods offer an analytically powerful addition or even an alternative. In this study, a DNA microarray has been developed to be able to investigate its potential as a tool for the identification of fish species from European seas based on mitochondrial 16S rDNA sequences. Eleven commercially important fish species were selected for a first prototype. Oligonucleotide probes were designed based on the 16S rDNA sequences obtained from 230 individuals of 27 fish species. In addition, more than 1200 sequences of 380 species served as sequence background against which the specificity of the probes was tested in silico. Single target hybridisations with Cy5-labelled, PCR-amplified 16S rDNA fragments from each of the 11 species on microarrays containing the complete set of probes confirmed their suitability. True-positive, fluorescence signals obtained were at least one order of magnitude stronger than false-positive cross-hybridisations. Single nontarget hybridisations resulted in cross-hybridisation signals at approximately 27% of the cases tested, but all of them were at least one order of magnitude lower than true-positive signals. This study demonstrates that the 16S rDNA gene is suitable for designing oligonucleotide probes, which can be used to differentiate 11 fish species. These data are a solid basis for the second step to create a “Fish Chip” for approximately 50 fish species relevant in marine environmental and fisheries research, as well as control of fisheries products

    Identifying Fishes through DNA Barcodes and Microarrays

    Get PDF
    Background: International fish trade reached an import value of 62.8 billion Euro in 2006, of which 44.6% are covered by the European Union. Species identification is a key problem throughout the life cycle of fishes: from eggs and larvae to adults in fisheries research and control, as well as processed fish products in consumer protection. Methodology/Principal Findings: This study aims to evaluate the applicability of the three mitochondrial genes 16S rRNA (16S), cytochrome b (cyt b), and cytochrome oxidase subunit I (COI) for the identification of 50 European marine fish species by combining techniques of ‘‘DNA barcoding’’ and microarrays. In a DNA barcoding approach, neighbour Joining (NJ) phylogenetic trees of 369 16S, 212 cyt b, and 447 COI sequences indicated that cyt b and COI are suitable for unambiguous identification, whereas 16S failed to discriminate closely related flatfish and gurnard species. In course of probe design for DNA microarray development, each of the markers yielded a high number of potentially species-specific probes in silico, although many of them were rejected based on microarray hybridisation experiments. None of the markers provided probes to discriminate the sibling flatfish and gurnard species. However, since 16S-probes were less negatively influenced by the ‘‘position of label’’ effect and showed the lowest rejection rate and the highest mean signal intensity, 16S is more suitable for DNA microarray probe design than cty b and COI. The large portion of rejected COI-probes after hybridisation experiments (.90%) renders the DNA barcoding marker as rather unsuitable for this high-throughput technology. Conclusions/Significance: Based on these data, a DNA microarray containing 64 functional oligonucleotide probes for the identification of 30 out of the 50 fish species investigated was developed. It represents the next step towards an automated and easy-to-handle method to identify fish, ichthyoplankton, and fish products

    Twelve-year trends in the prevalence and risk factors of diabetes and prediabetes in Turkish adults

    Get PDF
    There is concern about an emerging diabetes epidemic in Turkey. We aimed to determine the prevalence of diagnosed and undiagnosed diabetes, prediabetes and their 12-year trends and to identify risk factors for diabetes in the adult Turkish population. A cross-sectional, population-based survey, ‘TURDEP-II’ included 26,499 randomly sampled adults aged ≥ 20 years (response rate: 87 %). Fasting glucose and biochemical parameters were measured in all; then a OGTT was performed to identify diabetes and prediabetes in eligible participants. The prevalence of diabetes was 16.5 % (new 7.5 %), translating to 6.5 million adults with diabetes in Turkey. It was higher in women than men (p = 0.008). The age-standardized prevalence to the TURDEP-I population (performed in 1997–98) was 13.7 % (if same diagnostic definition was applied diabetes prevalence is calculated 11.4 %). The prevalence of isolated-IFG and impaired glucose tolerance (IGT), and combined prediabetes was 14.7, 7.9, and 8.2 %, respectively; and that of obesity 36 % and hypertension 31.4 %. Compared to TURDEP-I; the rate of increase for diabetes: 90 %, IGT: 106 %, obesity: 40 % and central obesity: 35 %, but hypertension decreased by 11 % during the last 12 years. In women age, waist, body mass index (BMI), hypertension, low education, and living environment; in men age, BMI, and hypertension were independently associated with an increased prevalence of diabetes. In women current smoking, and in men being single were associated with a reduced risk. These results from one of the largest nationally representative surveys carried out so far show that diabetes has rapidly become a major public health challenge in Turkey. The figures are alarming and underscore the urgent need for national programs to prevent diabetes, to manage the illness and thus prevent complications. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10654-013-9771-5) contains supplementary material, which is available to authorized users
    corecore