7 research outputs found

    Which Triggers Produce the Most Erosive, Frequent, and Longest Runout Turbidity Currents on Deltas?

    Get PDF
    Subaerial rivers and turbidity currents are the two most voluminous sediment transport processes on our planet, and it is important to understand how they are linked offshore from river mouths. Previously, it was thought that slope failures or direct plunging of river floodwater (hyperpycnal flow) dominated the triggering of turbidity currents on delta fronts. Here we reanalyze the most detailed timeā€lapse monitoring yet of a submerged delta; comprising 93 surveys of the Squamish Delta in British Columbia, Canada. We show that most turbidity currents are triggered by settling of sediment from dilute surface river plumes, rather than landslides or hyperpycnal flows. Turbidity currents triggered by settling plumes occur frequently, run out as far as landslideā€triggered events, and cause the greatest changes to delta and lobe morphology. For the first time, we show that settling from surface plumes can dominate the triggering of hazardous submarine flows and offshore sediment fluxes

    Mud-clast armoring and its implications for turbidite systems

    Get PDF
    Seafloor sediment density flows are the primary mechanism for transporting sediment to the deep sea. These flows are important because they pose a hazard to seafloor infrastructure and deposit the largest sediment accumulations on Earth. The cohesive sediment content of a flow (i.e., clay) is an important control on its rheological state (e.g., turbulent or laminar); however, how clay becomes incorporated into a flow is poorly understood. One mechanism is by the abrasion of (clay-rich) mud clasts. Such clasts are common in deep-water deposits, often thought to have traveled over large (more than tens of kilometers) distances. These long travel distances are at odds with previous experimental work that suggests that mud clasts should disintegrate rapidly through abrasion. To address this apparent contradiction, we conduct laboratory experiments using a counter rotating annular flume to simulate clast transport in sediment density flows. We find that as clay clasts roll along a sandy floor, surficial armoring develops and reduces clast abrasion and thus enhances travel distance. For the first time we show armoring to be a process of renewal and replenishment, rather than forming a permanent layer. As armoring reduces the rate of clast abrasion, it delays the release of clay into the parent flow, which can therefore delay flow transformation from turbidity current to debris flow. We conclude that armored mud clasts can form only within a sandy turbidity current; hence where armored clasts are found in debrite deposits, the parent flow must have undergone flow transformation farther up slope

    RykalovĆ”, Gabriela (2009): Entwicklung in der Tagespresse : dargestellt an journalistischen Textsorten der deutschsprachigen Zeitungen

    Get PDF
    Submarine channels have been important throughout geologic time for feeding globally significant volumes of sediment from land to the deep sea. Modern observations show that submarine channels can be sculpted by supercritical turbidity currents (seafloor sediment flows) that can generate upstream-migrating bedforms with a crescentic planform. In order to accurately interpret supercritical flows and depositional environments in the geologic record, it is important to be able to recognize the depositional signature of crescentic bedforms. Field geologists commonly link scour fills containing massive sands to crescentic bedforms, whereas models of turbidity currents produce deposits dominated by back-stepping beds. Here we reconcile this apparent contradiction by presenting the most detailed study yet that combines direct flow observations, time-lapse seabed mapping, and sediment cores, thus providing the link from flow process to depositional product. These data were collected within the proximal part of a submarine channel on the Squamish Delta, Canada. We demonstrate that bedform migration initially produces back-stepping beds of sand. However, these back-stepping beds are partially eroded by further bedform migration during subsequent flows, resulting in scour fills containing massive sand. As a result, our observations better match the depositional architecture of upstream-migrating bedforms produced by fluvial models, despite the fact that they formed beneath turbidity currents

    Direct monitoring reveals initiation of turbidity currents from extremely dilute river plumes

    Get PDF
    Rivers (on land) and turbidity currents (in the ocean) are the most important sediment transport processes on Earth. Yet, how rivers generate turbidity currents as they enter the coastal ocean remains poorly understood. The current paradigm, based on laboratory experiments, is that turbidity currents are triggered when river plumes exceed a threshold sediment concentration of ~1 kg.mā€3. Here we present direct observations of an exceptionally dilute riverā€plume, with sediment concentrations one order of magnitude below this threshold (0.07 kg.mā€3), which generated a fast (1.5 m.sā€1), erosive, shortā€lived (6 min) turbidity current. However, no turbidity current occurred during subsequent riverā€plumes. We infer that turbidity currents are generated when fineā€sediment, accumulating in a tidal turbidity maximum, is released during spring tide. This means that very dilute riverā€plumes can generate turbidity currents more frequently and in a wider range of locations, than previously thought

    Direct monitoring reveals initiation of turbidity currents from extremely dilute river plumes

    No full text
    Rivers (on land) and turbidity currents (in the ocean) are the most important sediment transport processes on Earth. Yet, how rivers generate turbidity currents as they enter the coastal ocean remains poorly understood. The current paradigm, based on laboratory experiments, is that turbidity currents are triggered when river plumes exceed a threshold sediment concentration of ~1 kg.mā€3. Here we present direct observations of an exceptionally dilute riverā€plume, with sediment concentrations one order of magnitude below this threshold (0.07 kg.mā€3), which generated a fast (1.5 m.sā€1), erosive, shortā€lived (6 min) turbidity current. However, no turbidity current occurred during subsequent riverā€plumes. We infer that turbidity currents are generated when fineā€sediment, accumulating in a tidal turbidity maximum, is released during spring tide. This means that very dilute riverā€plumes can generate turbidity currents more frequently and in a wider range of locations, than previously thought
    corecore