23 research outputs found
Anti-IL-2 Treatment Impairs the Expansion of Treg Cell Population during Acute Malaria and Enhances the Th1 Cell Response at the Chronic Disease
Plasmodium chabaudi infection induces a rapid and intense splenic CD4+ T cell response that contributes to both disease pathogenesis and the control of acute parasitemia. The subsequent development of clinical immunity to disease occurs concomitantly with the persistence of low levels of chronic parasitemia. The suppressive activity of regulatory T (Treg) cells has been implicated in both development of clinical immunity and parasite persistence. To evaluate whether IL-2 is required to induce and to sustain the suppressive activity of Treg cells in malaria, we examined in detail the effects of anti-IL-2 treatment with JES6-1 monoclonal antibody (mAb) on the splenic CD4+ T cell response during acute and chronic P. chabaudi AS infection in C57BL/6 mice. JES6-1 treatment on days 0, 2 and 4 of infection partially inhibits the expansion of the CD4+CD25+Foxp3+ cell population during acute malaria. Despite the concomitant secretion of IL-2 and expression of high affinity IL-2 receptor by large CD4+ T cells, JES6-1 treatment does not impair effector CD4+ T cell activation and IFN-γ production. However, at the chronic phase of the disease, an enhancement of cellular and humoral responses occurs in JES6-1-treated mice, with increased production of TNF-α and parasite-specific IgG2a antibodies. Furthermore, JES6-1 mAb completely blocked the in vitro proliferation of CD4+ T cells from non-treated chronic mice, while it further increased the response of CD4+ T cells from JES6-1-treated chronic mice. We conclude that JES6-1 treatment impairs the expansion of Treg cell population during early P. chabaudi malaria and enhances the Th1 cell response in the late phase of the disease
Well-posedness of minimal time problems with constant dynamics in Banach spaces
This paper concerns the study of a general minimal time problem with a
convex constant dynamics and a closed target set in Banach spaces. We pay the main
attention to deriving sufficient conditions for the major well-posedness properties that include the existence and uniqueness of optimal solutions as well as certain regularity of the optimal value function with respect to state variables. Most of the results obtained are new even in finite-dimensional spaces. Our approach is based on advanced tools of variational analysis and generalized differentiation
Caloric Restriction Is More Efficient than Physical Exercise to Protect from Cisplatin Nephrotoxicity via PPAR-Alpha Activation
The antineoplastic drug cisplatin promotes renal injury, which limits its use. Protocols that reduce renal cisplatin toxicity will allow higher doses to be used in cisplatin treatment. Here, we compare physical exercise and caloric restriction (CR) as protocols to reduce cisplatin renal injury in mice. Male C57BL/6 were divided into four groups: Control, cisplatin, exercise + cisplatin, and 30% CR + cisplatin. Animals were injected with a single dose of cisplatin (20 mg/kg i.p.) and sacrificed 96 h after injection. Quantitative real time PCR, histological analyses, immunohistochemistry, and biochemical measurements were performed to investigate renal injury, necrosis, apoptosis, and inflammatory mechanisms. Both protocols protected against cisplatin renal injury, but CR was more effective in reducing uraemia and renal necrosis. The CR + Cisplatin group exhibited reduced serum IL-1 beta and INF-alpha levels. No differences were noted in the renal mRNA expression of cytokines. Both interventions reduced apoptosis, but only the CR + Cisplatin group decreased TNFR2 protein expression. PPAR-ci was activated in mice after CR. An antagonist of PPAR-alpha blocked the protective effect of CR. Both interventions attenuated the nephrotoxicity caused by cisplatin injection, but CR + Cisplatin showed a better response by modulating TNFR2. Moreover, part of the CR benefit depends on PPAR-alpha activation.FAPESP (Fundacao de Apoio a Pesquisa do Estado de Sao Paulo)CAPES/DAADUniv Fed Sao Paulo, Dept Biofis, Sao Paulo, BrazilUniv Fed Sao Paulo, Dept Med, Disciplina Nefrol, Sao Paulo, BrazilUniv Sao Paulo, Inst Ciencias Biomed, Dept Immunol, Sao Paulo, BrazilUniv Sao Paulo, Dept Clin Med, Sao Paulo, BrazilUniv Fed Pelotas, Escola Nutr, Dept Nutr, Pelotas, BrazilMax Delbruck Ctr Mol Med, Berlin, GermanyUniv Fed Sao Paulo, Dept Biofis, Sao Paulo, BrazilUniv Fed Sao Paulo, Dept Med, Disciplina Nefrol, Sao Paulo, BrazilFAPESP: 2013/06207-6FAPESP: 2015/20082-7CAPES/DAAD: 427/15Web of Scienc
Diabetes and Increased Lipid Peroxidation are Associated with Systemic Inflammation Even in Well-Controlled Patients
Background The effect of the interaction between type 2 diabetes and dyslipidemia on inflammation and lipid peroxidation (LPO) has not been assessed. Aim To investigate whether diabetes coupled with dyslipidemia alters oxidative metabolism leading to increased LPO products and inflammatory status. Methods 100 patients were divided into four groups based upon diabetic and dyslipidemic status: poorly controlled diabetes with dyslipidemia (DM-PC/D), well-controlled diabetes with dyslipidemia (DM-WC/D), normoglycemic individuals with dyslipidemia (NG/D), and normoglycemic individuals without dyslipidemia (NG/ND). Plasma was evaluated for an LPO product (MDA), antioxidant levels and inflammatory cytokines. Results Diabetics presented significantly higher levels of LPO (p \u3c 0.05) and the DM-PC/D had higher levels of proinflammatory cytokines and MDA in the plasma in comparison with normoglycemics (p \u3c 0.05). Interestingly IL1-β, IL-6, and TNF-α in DM-WC/D were not statistically different from those in DM-PC/D. Normoglycemic individuals with dyslipidemia presented significantly increased levels of IL-6 and TNF-α when compared to normoglycemic without dyslipidemia (p \u3c 0.05). MDA levels were also positively correlated with the presence of DM complications (r = 0.42, p \u3c 0.01). Conclusions These findings show that dyslipidemia is associated with an increased inflammatory status, even in well-controlled diabetics and in normoglycemics. Our results suggest that lipid metabolism and peroxidation are important for the development of inflammation, which is elevated in several complications associated with diabetes
Importance of CD8 T cell-mediated immune response during intracellular parasitic infections and its implications for the development of effective vaccines
Obligatory intracellular parasites such as Plasmodium sp, Trypanosoma cruzi, Toxoplasma gondii and Leishmania sp are responsible for the infection of hundreds of millions of individuals every year. These parasites can deliver antigens to the host cell cytoplasm that are presented through MHC class I molecules to protective CD8 T cells. The in vivo priming conditions of specific CD8 T cells during natural infection are largely unknown and remain as an area that has been poorly explored. The antiparasitic mechanisms mediated by CD8 T cells include both interferon-g-dependent and -independent pathways. The fact that CD8 T cells are potent inhibitors of parasitic development prompted many investigators to explore whether induction of these T cells can be a feasible strategy for the development of effective subunit vaccines against these parasitic diseases. Studies performed on experimental models supported the hypothesis that CD8 T cells induced by recombinant viral vectors or DNA vaccines could serve as the basis for human vaccination. Regimens of immunization consisting of two different vectors (heterologous prime-boost) are much more efficient in terms of expansion of protective CD8 T lymphocytes than immunization with a single vector. The results obtained using experimental models have led to clinical vaccination trials that are currently underway
CD8(+)-T-Cell-Dependent Control of Trypanosoma cruzi Infection in a Highly Susceptible Mouse Strain after Immunization with Recombinant Proteins Based on Amastigote Surface Protein 2
We previously described that DNA vaccination with the gene encoding amastigote surface protein 2 (ASP-2) protects approximately 65% of highly susceptible A/Sn mice against the lethal Trypanosoma cruzi infection. Here, we explored the possibility that bacterial recombinant proteins of ASP-2 could be used to improve the efficacy of vaccinations. Initially, we compared the protective efficacy of vaccination regimens using either a plasmid DNA, a recombinant protein, or both sequentially (DNA priming and protein boosting). Survival after the challenge was not statistically different among the three mouse groups and ranged from 53.5 to 75%. The fact that immunization with a recombinant protein alone induced protective immunity revealed the possibility that this strategy could be pursued for vaccination. We investigated this possibility by using six different recombinant proteins representing distinct portions of ASP-2. The vaccination of mice with glutathione S-transferase fusion proteins representing amino acids 261 to 500 or 261 to 380 of ASP-2 in the presence of the adjuvants alum and CpG oligodeoxynucleotide 1826 provided remarkable immunity, consistently protecting 100% of the A/Sn mice. Immunity was completely reversed by the in vivo depletion of CD8(+) T cells, but not CD4(+) T cells, and was associated with the presence of CD8(+) T cells specific for an epitope located between amino acids 320 and 327 of ASP-2. We concluded that a relatively simple formulation consisting of a recombinant protein with a selected portion of ASP-2, alum, and CpG oligodeoxynucleotide 1826 might be used to cross-prime strong CD8(+)-T-cell-dependent protective immunity against T. cruzi infection
Activation of platelet-activating factor receptor exacerbates renal inflammation and promotes fibrosis
Platelet-activating factor (PAF) is a lipid mediator with important pro-inflammatory effects, being synthesized by several cell types including kidney cells. Although there is evidence of its involvement in acute renal dysfunction, its role in progressive kidney injury is not completely known. in the present study, we investigated the role of PAF receptor (PAFR) in an experimental model of chronic renal disease. Wild-type (WT) and PAFR knockout (KO) mice underwent unilateral ureter obstruction (UUO), and at kill time, urine and kidney tissue was collected. PAFR KO animals compared with WT mice present: (a) less renal dysfunction, evaluated by urine protein/creatinine ratio; (b) less fibrosis evaluated by collagen deposition, type I collagen, Lysyl Oxidase-1 (LOX-1) and transforming growth factor beta (TGF-beta) gene expression, and higher expression of bone morphogenetic protein 7 (BMP-7) (3.3-fold lower TGF-beta/BMP-7 ratio); (c) downregulation of extracellular matrix (ECM) and adhesion molecule-related machinery genes; and (d) lower levels of pro-inflammatory cytokines. These indicate that PAFR engagement by PAF or PAF-like molecules generated during UUO potentiates renal dysfunction and fibrosis and might promote epithelial-to-mesenchymal transition (EMT). Also, early blockade of PAFR after UUO leads to a protective effect, with less fibrosis deposition. in conclusion, PAFR signaling contributes to a pro-inflammatory environment in the model of obstructive nephropathy, favoring the fibrotic process, which lately will generate renal dysfunction and progressive organ failure