333 research outputs found

    Cytokinin transporters: GO and STOP in signaling

    Full text link
    Cytokinins are phytohormones essential for cytokinesis and many other physiological and developmental processes in planta. Long-distance transport and intercellular transport have been postulated. For these processes, the existence of cytokinin transporters has been suggested. Recently, a transporter loading the xylem (AtABCG14) and another for cellular import (AtPUP14) have been discovered. AtABCG14 participates in the xylem loading process of cytokinins and contributes to the positive regulation of shoot growth. The cellular importer AtPUP14 is required to suppress cytokinin signaling. A role of a transporter as stop signal is a new paradigm for a hormone transporter

    Isolated Hemiataxia and Cerebellar Diaschisis after a Small Dorsolateral Medullary Infarct

    Get PDF
    Isolated hemiataxia after a medullary infarct is rare. We describe a case of isolated hemiataxia after a small infarct localized at the ipsilateral dorsolateral medulla. An 83-year-old man developed acute onset of ataxia in the left arm and in both legs. Speech and extraocular movement were normal, and he did not have any other neurological manifestations. Brain MRI showed a small infarct localized at the left dorsolateral medulla, which involved the inferior cerebellar peduncle. 123ECD-SPECT showed hypoperfusion in the left cerebellar hemisphere without clear vascular territory. Neuroimaging findings for our patient suggested the involvement of the inferior cerebellar peduncle that projects to the cerebellum in our patient

    Molecular architecture of inner dynein arms in situ in Chlamydomonas reinhardtii flagella

    Get PDF
    The inner dynein arm regulates axonemal bending motion in eukaryotes. We used cryo-electron tomography to reconstruct the three-dimensional structure of inner dynein arms from Chlamydomonas reinhardtii. All the eight different heavy chains were identified in one 96-nm periodic repeat, as expected from previous biochemical studies. Based on mutants, we identified the positions of the AAA rings and the N-terminal tails of all the eight heavy chains. The dynein f dimer is located close to the surface of the A-microtubule, whereas the other six heavy chain rings are roughly colinear at a larger distance to form three dyads. Each dyad consists of two heavy chains and has a corresponding radial spoke or a similar feature. In each of the six heavy chains (dynein a, b, c, d, e, and g), the N-terminal tail extends from the distal side of the ring. To interact with the B-microtubule through stalks, the inner-arm dyneins must have either different handedness or, more probably, the opposite orientation of the AAA rings compared with the outer-arm dyneins

    Cerebellar Ataxia and Overactive Bladder after Encephalitis Affecting the Cerebellum

    Get PDF
    The cerebellum is one of the regions that contribute to urinary dysfunction in humans. A 43-year-old woman at age 35 had an acute onset of encephalitis that led to fever, generalized convulsion and coma. Six months after the disease onset, she regained consciousness and developed generalized myoclonus, cerebellar ataxia and overactive bladder, e.g., urinary urgency, daytime urinary frequency, and urinary incontinence. Eight years after the disease onset, she was revealed to have cerebellar atrophy on MRI, cerebellar hypoperfusion on SPECT, and detrusor overactivity on urodynamic study. Selective inflammation in the cerebellum seemed to produce cerebellar ataxia and overactive bladder in our case

    Salicylic Acid and Jasmonic Acid Pathways are Activated in Spatially Different Domains Around the Infection Site During Effector-Triggered Immunity in Arabidopsis thaliana

    Get PDF
    The innate immune response is, in the first place, elicited at the site of infection. Thus, the host response can be different among the infected cells and the cells surrounding them. Effector-triggered immunity (ETI), a form of innate immunity in plants, is triggered by specific recognition between pathogen effectors and their corresponding plant cytosolic immune receptors, resulting in rapid localized cell death known as hypersensitive response (HR). HR cell death is usually limited to a few cells at the infection site, and is surrounded by a few layers of cells massively expressing defense genes such as Pathogenesis-Related Gene 1 (PR1). This virtually concentric pattern of the cellular responses in ETI is proposed to be regulated by a concentration gradient of salicylic acid (SA), a phytohormone accumulated around the infection site. Recent studies demonstrated that jasmonic acid (JA), another phytohormone known to be mutually antagonistic to SA in many cases, is also accumulated in and required for ETI, suggesting that ETI is a unique case. However, the molecular basis for this uniqueness remained largely to be solved. Here, we found that, using intravital time-lapse imaging, the JA signaling pathway is activated in the cells surrounding the central SA-active cells around the infection sites in Arabidopsis thaliana. This distinct spatial organization explains how these two phythormone pathways in a mutually antagonistic relationship can be activated simultaneously during ETI. Our results re-emphasize that the spatial consideration is a key strategy to gain mechanistic insights into the apparently complex signaling cross-talk in immunity.A correction has been published:Plant and Cell Physiology, Volume 59, Issue 2, 1 February 2018, Pages 43

    Wounding triggers callus formation via dynamic hormonal and transcriptional changes

    Get PDF
    Wounding is a primary trigger of organ regeneration, but how wound stress reactivates cell proliferation and promotes cellular reprogramming remains elusive. In this study, we combined transcriptome analysis with quantitative hormonal analysis to investigate how wounding induces callus formation in Arabidopsis (Arabidopsis thaliana). Our time course RNA-seq analysis revealed that wounding induces dynamic transcriptional changes, starting from rapid stress responses followed by the activation of metabolic processes and protein synthesis and subsequent activation of cell cycle regulators. Gene ontology analyses further uncovered that wounding modifies the expression of hormone biosynthesis and response genes, and quantitative analysis of endogenous plant hormones revealed accumulation of cytokinin prior to callus formation. Mutants defective in cytokinin synthesis and signaling display reduced efficiency in callus formation, indicating that de novo synthesis of cytokinin is critical for wound-induced callus formation. We further demonstrate that type-B ARABIDOPSIS RESPONSE REGULATOR-mediated cytokinin signaling regulates the expression of CYCLIN D3;1 (CYCD3;1) and that mutations in CYCD3;1 and its homologs CYCD3;2 and 3 cause defects in callus formation. In addition to these hormone-mediated changes, our transcriptome data uncovered that wounding activates multiple developmental regulators, and we found novel roles of ETHYLENE RESPONSE FACTOR 115 and PLETHORA3 (PLT3), PLT5, and PLT7 in callus generation. All together, these results provide novel mechanistic insights into how wounding reactivates cell proliferation during callus formation

    Monoamines, Insulin and the Roles They Play in Associative Learning in Pond Snails

    Get PDF
    Molluscan gastropods have long been used for studying the cellular and molecular mechanisms underlying learning and memory. One such gastropod, the pond snail Lymnaea stagnalis, exhibits long-term memory (LTM) following both classical and operant conditioning. Using Lymnaea, we have successfully elucidated cellular mechanisms of learning and memory utilizing an aversive classical conditioning procedure, conditioned taste aversion (CTA). Here, we present the behavioral changes following CTA training and show that the memory score depends on the duration of food deprivation. Then, we describe the relationship between the memory scores and the monoamine contents of the central nervous system (CNS). A comparison of learning capability in two different strains of Lymnaea, as well as the filial 1 (F1) cross from the two strains, presents how the memory scores are correlated in these populations with monoamine contents. Overall, when the memory scores are better, the monoamine contents of the CNS are lower. We also found that as the insulin content of the CNS decreases so does the monoamine contents which are correlated with higher memory scores. The present review deepens the relationship between monoamine and insulin contents with the memory score
    corecore