23 research outputs found

    Analysis of yield-attributing traits for high-yielding wheat lines in southwestern Japan

    No full text
    Development of wheat cultivars that achieve high yields despite the short growing season is essential for increasing wheat production in southwestern Japan. The objectives of this study were to assess the genetic progress in grain yield and to clarify yield-attributing traits of high-yielding wheat lines in southwestern Japan. We conducted field experiments for two growing seasons (2012–2013 and 2013–2014) using three commercial wheat cultivars (Shiroganekomugi, Chikugoizumi, and Iwainodaichi) and four high-yielding wheat lines including Hakei W1380 developed in southwestern Japan. In an ancillary field experiment, we compared a commercial cultivar, Shiroganekomugi, and a high-yielding line, Hakei W1380, in the 2014–2015 season. Across the two seasons, grain yield of high-yielding lines was generally higher than commercial cultivars. Hakei W1380 achieved the highest grain yield across the two seasons, and successfully produced more than 900 g m−2 in the 2013–2014 season. Correlation analysis showed that recent yield progress of wheat lines in southwestern Japan was derived from enhanced biomass production and grain number m−2. Larger numbers of grains m−2 in high-yielding lines than in commercial cultivars were associated with higher crop growth rate at the pre-anthesis stage, and therefore higher spike dry weight m−2 at anthesis. Genotypic differences in crop growth rate from jointing to anthesis resulted mainly from differences in leaf area index. These results indicate that further improvements in grain yield in southwestern Japan could be achieved by increasing the amount of radiation intercepted at the pre-anthesis stage and grain number m−2

    Cadmium Concentration in Grains of Japanese Wheat Cultivars : Genotypic Difference and Relationship with Agronomic Characteristics

    No full text
    The contamination of cadmium (Cd) into the food chain can be harmful because Cd causes chronic health problems. To evaluate the breeding potential reducing the Cd concentration in wheat grain, we compared Cd concentrations in 237 wheat genotypes including Japanese landraces, Japanese cultivars and introduced alien cultivars for breeding using grain samples collected from upland fields in 2004−5 and 2005−6 growing seasons. The Cd concentration in wheat grain significantly varied with the growing seasons and with the experimental fields. Cultivars bred in northern Japan, including the recent Japanese leading cultivar ‘Hokushin’, tended to have a low Cd concentration in grain compared with that bred in central and southern Japan. Simple correlation analysis between Cd concentration in grain and agronomic characteristics revealed that the Cd concentration in grain showed significant negative correlations with stem number, culm length and spikelet number per spike, and showed significant positive correlation with SPAD value (chlorophyll content) of flag leaf. Stepwise multipleregression analysis showed that the genotypic variation of Cd concentration in grain was associated with the culm length and spiklet number per spike. This study clarified the geographical pattern of genotypes with different Cd concentrations in grain in Japanese wheat cultivars. Cultivars originating from northern Japan may be useful genetic resources to develop cultivars with a low Cd concentration in grain to be grown in the areas where Cd accumulation in wheat grain is a problem

    Introgression of chromosomal segments conferring early heading date from wheat diploid progenitor, Aegilops tauschii Coss., into Japanese elite wheat cultivars

    Get PDF
    The breeding of agriculturally useful genes from wild crop relatives must take into account recent and future climate change. In Japan, the development of early heading wheat cultivars without the use of any major gene controlling the heading date is desired to avoid overlap of the harvesting time before the rainy season. Here, we backcrossed two early heading lines of a synthetic hexaploid wheat, derived from a crossing between durum wheat and the wild wheat progenitor Aegilops tauschii, with four Japanese elite cultivars to develop early heading lines of bread wheat. In total, nine early heading lines that showed a heading date two to eight days earlier than their parental cultivars in field conditions were selected and established from the selfed progenies of the two- or three-times backcrossed populations. The whole appearance and spike shape of the selected early heading lines looked like their parental wheat cultivars. The mature grains of the selected lines had the parental cultivars' characteristics, although the grains exhibited longer and narrower shapes. RNA sequencing-based genotyping was performed to detect single nucleotide polymorphisms between the selected lines and their parental wheat cultivars, which revealed the chromosomal regions transmitted from the parental synthetic wheat to the selected lines. The introgression regions could shorten wheat heading date, and their chromosomal positions were dependent on the backcrossed wheat cultivars. Therefore, early heading synthetic hexaploid wheat is useful for fine-tuning of the heading date through introgression of Ae. tauschii chromosomal regions

    Flavonoid compounds related to seed coat color of wheat

    No full text
    <p>In red wheat, reddish-brown pigments accumulate in testa of mature seeds. Half-cut wheat seeds were immersed in <i>p</i>-dimethylaminocinnamaldehyde (DMACA) reagent that stains flavanol structures blue. Testa of 10–40 days after flowering (DAF) in red wheat (“Norin 61” and “Satonosora”) seeds were stained blue and the reagent color changed to blue with 10–25 DAF seeds. No blue staining was observed in white wheat (“Tamaizumi”) seeds during maturation. “Norin 61” seed coats at 10 DAF contained dihydroquercetin, dihydromyricetin, (+)-catechin, procyanidin B3, and prodelphinidin B3, which were identified by HPLC-diode array detector and LC-MS/MS analyses. These five components began accumulating 7 DAF, reached maxima at 10 or 15 DAF, and then decreased in red wheat seeds, but were not detected in white wheat seeds. These results suggest that flavanol and proanthocyanidins are possible precursors of the reddish-brown pigments of red wheat seeds, and are converted to insoluble compounds as the seeds mature.</p> <p>Dihydroflavonols, flavanol, and proanthocyanidin dimers accumulated in immature red wheat seeds, whose mature seed coat has reddish-brown pigments, but not in white wheat seeds.</p
    corecore