119 research outputs found

    Synthesis and characterization of oligonucleotides containing 2′-fluorinated thymidine glycol as inhibitors of the endonuclease III reaction

    Get PDF
    Endonuclease III (Endo III) is a base excision repair enzyme that recognizes oxidized pyrimidine bases including thymine glycol. This enzyme is a glycosylase/lyase and forms a Schiff base-type intermediate with the substrate after the damaged base is removed. To investigate the mechanism of its substrate recognition by X-ray crystallography, we have synthesized oligonucleotides containing 2′-fluorothymidine glycol, expecting that the electron-withdrawing fluorine atom at the 2′ position would stabilize the covalent intermediate, as observed for T4 endonuclease V (Endo V) in our previous study. Oxidation of 5′- and 3′-protected 2′-fluorothymidine with OsO(4) produced two isomers of thymine glycol. Their configurations were determined by NMR spectroscopy after protection of the hydroxyl functions. The ratio of (5R,6S) and (5S,6R) isomers was 3:1, whereas this ratio was 6:1 in the case of the unmodified sugar. Both of the thymidine glycol isomers were converted to the corresponding phosphoramidite building blocks and were incorporated into oligonucleotides. When the duplexes containing 2′-fluorinated 5R- or 5S-thymidine glycol were treated with Escherichia coli endo III, no stabilized covalent intermediate was observed regardless of the stereochemistry at C5. The 5S isomer was found to form an enzyme–DNA complex, but the incision was inhibited probably by the fluorine-induced stabilization of the glycosidic bond

    Factors Associated with Remission and/or Regression of Microalbuminuria in Type 2 Diabetes Mellitus

    Get PDF
    The aim of this study was to clarify the factors associated with the remission and/or regression of microalbuminuria in Japanese patients with type 2 diabetes mellitus. We retrospectively analyzed the data of 130 patients with type 2 diabetes mellitus with microalbuminuria for 2-6 years (3.39±1.31 years). Remission was defined as improving from microalbuminuria to normoalbuminuria using the albumin/creatinine ratio (ACR), and regression of microalbuminuria was defined as a decrease in ACR of 50% or more from baseline. Progression of microalbuminuria was defined as progressing from microalbuminuria to overt proteinuria during the follow-up period. Among 130 patients with type 2 diabetes mellitus with microalbuminuria, 57 and 13 patients were defined as having remission and regression, respectively, while 26 patients progressed to overt proteinuria. Sex (female), higher HDL cholesterol and lower HbA1c were determinant factors associated with remission/regression of microalbuminuria by logistic regression analysis. Lower systolic blood pressure (SBP) was also correlated with remission/regression, but not at a significant level. These results suggest that proper control of blood glucose, BP and lipid profiles may be associated with remission and/or regression of type 2 diabetes mellitus with microalbuminuria in clinical practice

    The Macrophage Is a Key Factor in Renal Injuries Caused by Glomerular Hyperfiltration

    Get PDF
    Glomerular hyperfiltration is a common pathway leading to glomerulosclerosis in various kinds of kidney diseases. The 5/6 renal ablation is an established experimental animal model for glomerular hyperfiltration. On the other hand, low-grade inflammation is also a common mechanism for the progression of kidney diseases including diabetic nephropathy and atherosclerosis. Here we analyzed the gene expression profile in the remnant kidney tissues of 5/6 nephrectomized mice using a DNA microarray system and compared it with that of sham-operated control mice. The 5/6 nephrectomized mice showed glomerular hypertrophy and an increase in the extracellular matrix in the glomeruli. DNA microarray analysis indicated the up-regulated expression of various kinds of genes related to the inflammatory process in remnant kidneys. We confirmed the up-regulated expression of platelet factor-4, and monocyte chemoattractant protein-1, 2, and 5 in remnant kidneys by RT-PCR. The current results suggest that the inflammatory process is involved in the progression of glomerulosclerosis and is a common pathway of the pathogenesis of kidney disease

    8-Prenylnaringenin tissue distribution and pharmacokinetics in mice and its binding to human serum albumin and cellular uptake in human embryonic kidney cells

    Get PDF
    8-Prenylnaringenin (8-PN), a hop flavonoid, is a promising food substance with health benefits. Compared with nonprenylated naringenin, 8-PN exhibits stronger estrogenic activity and prevents muscle atrophy. Moreover, 8-PN prevents hot flushes and bone loss. Considering that prenylation reportedly improves the bioavailability of flavonoids, we compared the parameters related to the bioavailability [pharmacokinetics and tissue distribution in C57/BL6 mice, binding affinity to human serum albumin (HSA), and cellular uptake in HEK293 cells] of 8-PN and its mother (non-prenylated) compound naringenin. C57/BL6 mice were fed an 8-PN or naringenin mixed diet for 22 days. The amount of 8-PN (nmol/g tissue) in the kidneys (16.8 ± 9.20), liver (14.8 ± 2.58), muscles (3.33 ± 0.60), lungs (2.07 ± 0.68), pancreas (1.80 ± 0.38), heart (1.71 ± 0.27), spleen (1.36 ± 0.29), and brain (0.31 ± 0.09) was higher than that of naringenin. A pharmacokinetic study in mice demonstrated that the Cmax of 8-PN (50 mg/kg body weight) was lower than that of naringenin; however, the plasma concentration of 8-PN 8 h after ingestion was higher than that of naringenin. The binding affinity of 8-PN to HSA and cellular uptake in HEK293 cells were higher than those of naringenin. 8-PN bioavailability features assessed in mouse or human model experiments were obviously different from those of naringenin

    Chemical synthesis of oligodeoxyribonucleotides containing the Dewar valence isomer of the (6–4) photoproduct and their use in (6–4) photolyase studies

    Get PDF
    The pyrimidine(6–4)pyrimidone photoproduct, a major UV lesion formed between adjacent pyrimidine bases, is transformed to its Dewar valence isomer upon exposure to UVA/UVB light. We have synthesized a phosphoramidite building block of the Dewar photoproduct formed at the thymidylyl(3′–5′)thymidine site and incorporated it into oligodeoxyribonucleotides. The diastereoisomers of the partially protected dinucleoside monophosphate bearing the (6–4) photoproduct, which were caused by the chirality of the phosphorus atom, were separated by reversed-phase chromatography, and the (6–4) photoproduct was converted to the Dewar photoproduct by irradiation of each isomer with Pyrex-filtered light from a high-pressure mercury lamp. The Dewar photoproduct was stable under both acidic and alkaline conditions at room temperature. After characterization of the isomerized base moiety by NMR spectroscopy, a phosphoramidite building block was synthesized in three steps. Although the ordinary method could be used for the oligonucleotide synthesis, benzimidazolium triflate as an alternative activator yielded better results. The oligonucleotides were used for the analysis of the reaction and the binding of Xenopus (6–4) photolyase. Although the affinity of this enzyme for the Dewar photoproduct-containing duplex was reportedly similar to that for the (6–4) photoproduct-containing substrate, the results suggested a difference in the binding mode

    Characterization of a Y-Family DNA Polymerase eta from the Eukaryotic Thermophile Alvinella pompejana

    Get PDF
    Human DNA polymerase η (HsPolη) plays an important role in translesion synthesis (TLS), which allows for replication past DNA damage such as UV-induced cis-syn cyclobutane pyrimidine dimers (CPDs). Here, we characterized ApPolη from the thermophilic worm Alvinella pompejana, which inhabits deep-sea hydrothermal vent chimneys. ApPolη shares sequence homology with HsPolη and contains domains for binding ubiquitin and proliferating cell nuclear antigen. Sun-induced UV does not penetrate Alvinella's environment; however, this novel DNA polymerase catalyzed efficient and accurate TLS past CPD, as well as 7,8-dihydro-8-oxoguanine and isomers of thymine glycol induced by reactive oxygen species. In addition, we found that ApPolη is more thermostable than HsPolη, as expected from its habitat temperature. Moreover, the activity of this enzyme was retained in the presence of a higher concentration of organic solvents. Therefore, ApPolη provides a robust, human-like Polη that is more active after exposure to high temperatures and organic solvents

    The association of C-reactive protein with an oxidative metabolite of LDL and its implication in atherosclerosis

    Get PDF
    C-reactive protein (CRP) is one of the strongest independent predictors of cardiovascular disease. We have previously reported that oxidized LDL (oxLDL) interacts with beta 2-glycoprotein I (beta 2GPI), implicating oxLDL/P2GPI complexes as putative autoantigens in autoimmune-mediated atherosclerotic vascular disease. In this study, we investigated the interaction of CRP with oxLDL/beta 2GPI complexes and its association with atherosclerosis in patients with diabetes mellitus (DM). CRP/oxLDL/R2GPI complexes were predominantly found in sera of DM patients with atherosclerosis. In contrast, noncomplexed CRP isoforms were present in sera of patients with acute/chronic inflammation, i.e., various pyrogenic diseases, rheumatoid arthritis (RA), and DM. Immunohistochemistry staining colocalized CRP and beta 2GPI together with oxLDL in carotid artery plaques but not in synovial tissue from RA patients, strongly suggesting that complex formation occurs during the development of adierosclerosis. Serum levels of CRP correlated with soluble forms of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1, and oxLDL/beta 2GPI complexes correlated with total cholesterol and hemoglobin Al c. Thus, the generation of CRP/oxLDL/beta 2GPI complexes seems to be associated with arterial inflammation, hyperglycemia, and hypercholesterolemia. CRP/oxLDL/R2GPI complexes can be distinguished from pyrogenic noncomplexed CRP isoforms and may represent a more specific and predictive marker for atherosclerosis
    corecore