83 research outputs found

    Expanding frontiers in materials chemistry and physics with multiple anions

    Get PDF
    During the last century, inorganic oxide compounds laid foundations for materials synthesis, characterization, and technology translation by adding new functions into devices previously dominated by main-group element semiconductor compounds. Today, compounds with multiple anions beyond the single-oxide ion, such as oxyhalides and oxyhydrides, offer a new materials platform from which superior functionality may arise. Here we review the recent progress, status, and future prospects and challenges facing the development and deployment of mixed-anion compounds, focusing mainly on oxide-derived materials. We devote attention to the crucial roles that multiple anions play during synthesis, characterization, and in the physical properties of these materials. We discuss the opportunities enabled by recent advances in synthetic approaches for design of both local and overall structure, state-of-the-art characterization techniques to distinguish unique structural and chemical states, and chemical/physical properties emerging from the synergy of multiple anions for catalysis, energy conversion, and electronic materials

    Ultrasensitive human prion detection in cerebrospinal fluid by real-time quaking-induced conversion.

    Get PDF
    The development of technologies for the in vitro amplification of abnormal conformations of prion protein (PrP(Sc)) has generated the potential for sensitive detection of prions. Here we developed a new PrP(Sc) amplification assay, called real-time quaking-induced conversion (RT-QUIC), which allows the detection of ≄1 fg of PrP(Sc) in diluted Creutzfeldt-Jakob disease (CJD) brain homogenate. Moreover, we assessed the technique first in a series of Japanese subjects and then in a blind study of 30 cerebrospinal fluid specimens from Australia, which achieved greater than 80% sensitivity and 100% specificity. These findings indicate the promising enhanced diagnostic capacity of RT-QUIC in the antemortem evaluation of suspected CJD

    Photocatalytic splitting of water.

    Get PDF
    The use of photocatalysis for the photosplitting of water to generate hydrogen and oxygen has gained interest as a method for the conversion and storage of solar energy. The application of photocatalysis through catalyst engineering, mechanistic studies and photoreactor development has highlighted the potential of this technology, with the number of publications significantly increasing in the past few decades. In 1972 Fujishima and Honda described a photoelectrochemical system capable of generating H2 and O2 using thin-film TiO2. Since this publication, a diverse range of catalysts and platforms have been deployed, along with a varying range of photoreactors coupled with photoelectrochemical and photovoltaic technology. This chapter aims to provide a comprehensive overview of photocatalytic technology applied to overall H2O splitting. An insight into the electronic and geometric structure of catalysts is given based upon the one- and two-step photocatalyst systems. One-step photocatalysts are discussed based upon their d0 and d10 electron configuration and core metal ion including transition metal oxides, typical metal oxides and metal nitrides. The two-step approach, referred to as the Z-scheme, is discussed as an alternative approach to the traditional one-step mechanism, and the potential of the system to utilise visible and solar irradiation. In addition to this the mechanistic procedure of H2O splitting is reviewed to provide the reader with a detailed understanding of the process. Finally, the development of photoreactors and reactor properties are discussed with a view towards the photoelectrochemical splitting of H2O

    Fabrication of cation-doped BaTaO 2

    No full text
    • 

    corecore