147 research outputs found

    Composition of the Chandra ACIS contaminant

    Full text link
    The Advanced CCD Imaging Spectrometer (ACIS) on the Chandra X-ray Observatory is suffering a gradual loss of low energy sensitivity due to a buildup of a contaminant. High resolution spectra of bright astrophysical sources using the Chandra Low Energy Transmission Grating Spectrometer (LETGS) have been analyzed in order to determine the nature of the contaminant by measuring the absorption edges. The dominant element in the contaminant is carbon. Edges due to oxygen and fluorine are also detectable. Excluding H, we find that C, O, and F comprise >80%, 7%, and 7% of the contaminant by number, respectively. Nitrogen is less than 3% of the contaminant. We will assess various candidates for the contaminating material and investigate the growth of the layer with time. For example, the detailed structure of the C-K absorption edge provides information about the bonding structure of the compound, eliminating aromatic hydrocarbons as the contaminating material.Comment: To appear in Proceedings SPIE volume 5165; paper is 12 pages long with 13 figure

    Inner-shell excitation spectroscopy of aniline, nitrobenzene, and nitroanilines

    Get PDF
    Abstract: Oscillator strengths for C Is, N Is, and 0 1s excitation spectra of aniline, nitrobenzene, and the isomeric nitroanilines have been derived from inner-shell electron energy loss spectroscopy recorded under low momentum transfer conditions (>2.5 keV impact energy and small scattering angle, 0 52'). Extended Hiickel Molecular Orbital (EHMO) calculations carried out within the equivalent core analogy are used to aid spectral interpretation. These spectra are used to investigate the sensitivity of core excitation spectroscopy to charge transfer interactions in aromatic molecules that have both electron-donating and electronwithdrawing substituents. Strong multielectron excitation features were not found, although these had been anticipated from photoemission studies. The C 1s + T* and N 1s (NH,) + n* spectral features of the nitroanilines are found to be strongly dependent on the substitution pattern (ortho, meta, or para). Key words: electronic structure, inner-shell excitation, nitroanilines, EHMO calculations. RCsumC : En se basant sur la spectroscopie de la perte d'energie des Clectrons des couches internes dans des conditions de faible transfert du moment (Cnergie d'impact >2,5 keV et faible angle de diffusion, 0 52O), on a dCrivC les forces d'oscillateur des C Is, N 1s et 0 1s pour les spectres d'excitation de l'aniline, du nitrobenzkne et des nitroanilines isomkres. Comme aide I'interprCtation spectrale, on a utilisC des calculs d'orbitales molCculaires de Hiickel ttendues (OMHE) effectuts ides conditions correspondantes i celle de l'analogie Cquivalente a celles des couches internes. On a utilisC ces spectres pour ttudier la sensibilitC de la spectroscopie d'excitation des couches intirieures aux interactions de transfert de charge dans des molCcules qui portent ? t la fois des substituants Clectrodonneurs et Clectroattracteurs. On n'a pas observk de caractkristiques de fortes excitations multiClectroniques, mdme si on les avait antioipCes sur la base des Ctudes de photoCmission. On a observC que les caractkristiques spectrales des transitions C Is + T* et N 1s (NH,) + T* des nitroanilines dtpendent fortement des positions (ortho, me'ta ou para) des substituants

    Soft X-ray spectro-ptychography on boron nitride nanotubes, carbon nanotubes and permalloy nanorods

    Full text link
    Spectro-ptychography offers improved spatial resolution and additional phase spectral information relative to that provided by scanning transmission X-ray microscopes (STXM). However, carrying out ptychography at the lower range of soft X-ray energies (e.g., below 200 eV to 600 eV) on samples with weakly scattering signals can be challenging. We present soft X-ray ptychography results at energies as low as 180 eV and illustrate the capabilities with results from permalloy nanorods (Fe 2p), carbon nanotubes (C 1s), and boron nitride bamboo nanostructures (B 1s, N1s). We describe optimization of low energy X-ray spectro-ptychography and discuss important challenges associated with measurement approaches, reconstruction algorithms, and their effects on the reconstructed images. A method for evaluating the increase in radiation dose when using overlapping sampling is presented.Comment: 32 pages, 7 figure

    Iron biochemistry is correlated with amyloid plaque morphology in an established mouse model of Alzheimer’s disease

    Get PDF
    A signature characteristic of Alzheimer's disease (AD) is aggregation of amyloid-beta (Aβ) fibrils in the brain. Nevertheless, the links between Aβ and AD pathology remain incompletely understood. It has been proposed that neurotoxicity arising from aggregation of the Aβ1-42 peptide can in part be explained by metal ion binding interactions. Using advanced X-ray microscopy techniques at sub-micron resolution, we investigated relationships between iron biochemistry and AD pathology in intact cortex from an established mouse model over-producing Aβ. We found a direct correlation of amyloid plaque morphology with iron, and evidence for the formation of an iron-amyloid complex. We also show that iron biomineral deposits in the cortical tissue contain the mineral magnetite, and provide evidence that Aβ-induced chemical reduction of iron could occur in vivo. Our observations point to the specific role of iron in amyloid deposition and AD pathology, and may impact development of iron-modifying therapeutics for AD

    Nickel partitioning in biogenic and abiogenic ferrihydrite: the influence of silica and implications for ancient environments

    Get PDF
    Fe(III) (oxyhydr)oxides are ubiquitous in modern soils and sediments, and their large surface area leads to scavenging of trace elements. Experimental trace element partitioning between Fe(III) (oxyhydr)oxides and aqueous solutions have been used to elucidate the geochemical composition of the Precambrian oceans based on the trace element concentrations in Precambrian banded iron formations (BIFs). However, previous partitioning experiments did not consider the potential influence of microbially-derived organic material, even though it is widely believed that bacterial phytoplankton was involved in Fe(II) oxidation and the deposition of BIF primary minerals. Therefore, the present study focuses on sorption of Ni to, and co-precipitation of Ni with, both biogenic ferrihydrite (Fe(OH)3) precipitated by the freshwater photoferrotroph Rhodobacter ferrooxidans SW2 and the marine photoferrotroph Rhodovulum iodosum, as well as chemically synthesized ferrihydrite. We considered the influence of cellular organic material, medium composition and the availability of dissolved silica. Our results show a preferential association of Ni with ferrihydrite, and not with the microbial cells or extracellular organic substances. We found that the addition of silica (2 mM) did not influence Ni partitioning but led to the encrustation of some cells with ferrihydrite and amorphous silica. The two- to threefold lower Ni/Fe ratio in biogenic as compared to abiogenic ferrihydrite is probably due to a competition between Ni and organic matter for sorption sites on the mineral surface. Additionally, the competition of ions present at high concentrations in marine medium for sorption sites led to decreased Ni sorption or co-precipitation. Based on our data we conclude that, if the Fe(III) minerals deposited in BIFs were – at least to some extent – biological, then the Ni concentrations in the early ocean would have been higher than previously suggested. This study shows the importance of considering the presence of microbial biomass and seawater ions in paleomarine reconstructions

    Photofragmentation of \u3ci\u3ecloso\u3c/i\u3e-Carboranes Part 1: Energetics of Decomposition

    Get PDF
    The ionic fragmentation following B 1s and C 1s excitation of three isomeric carborane cage compounds [closo-dicarbadodecaboranes: orthocarborane (1,2-C2B10H12), metacarborane (1,7-C2B10H12), and paracarborane (1,12-C2B10H12)] is compared with the energetics of decomposition. The fragmentation yields for all three molecules are quite similar. Thermodynamic cycles are constructed for neutral and ionic species in an attempt to systemically characterize single-ion closo-carborane creation and fragmentation processes. Lower energy decomposition processes are favored. Among the ionic species, the photon-induced decomposition is dominated by BH+ and BH2+ fragment loss. Changes in ion yield associated with core to bound excitations are observed
    • …
    corecore