8 research outputs found

    FedComm: Federated Learning as a Medium for Covert Communication

    Full text link
    Proposed as a solution to mitigate the privacy implications related to the adoption of deep learning, Federated Learning (FL) enables large numbers of participants to successfully train deep neural networks without having to reveal the actual private training data. To date, a substantial amount of research has investigated the security and privacy properties of FL, resulting in a plethora of innovative attack and defense strategies. This paper thoroughly investigates the communication capabilities of an FL scheme. In particular, we show that a party involved in the FL learning process can use FL as a covert communication medium to send an arbitrary message. We introduce FedComm, a novel multi-system covert-communication technique that enables robust sharing and transfer of targeted payloads within the FL framework. Our extensive theoretical and empirical evaluations show that FedComm provides a stealthy communication channel, with minimal disruptions to the training process. Our experiments show that FedComm successfully delivers 100% of a payload in the order of kilobits before the FL procedure converges. Our evaluation also shows that FedComm is independent of the application domain and the neural network architecture used by the underlying FL scheme.Comment: 18 page

    Minerva: A File-Based Ransomware Detector

    Full text link
    Ransomware is a rapidly evolving type of malware designed to encrypt user files on a device, making them inaccessible in order to exact a ransom. Ransomware attacks resulted in billions of dollars in damages in recent years and are expected to cause hundreds of billions more in the next decade. With current state-of-the-art process-based detectors being heavily susceptible to evasion attacks, no comprehensive solution to this problem is available today. This paper presents Minerva, a new approach to ransomware detection. Unlike current methods focused on identifying ransomware based on process-level behavioral modeling, Minerva detects ransomware by building behavioral profiles of files based on all the operations they receive in a time window. Minerva addresses some of the critical challenges associated with process-based approaches, specifically their vulnerability to complex evasion attacks. Our evaluation of Minerva demonstrates its effectiveness in detecting ransomware attacks, including those that are able to bypass existing defenses. Our results show that Minerva identifies ransomware activity with an average accuracy of 99.45% and an average recall of 99.66%, with 99.97% of ransomware detected within 1 second.Comment: 19 pages, 3 figure

    MaleficNet: Hiding Malware into Deep Neural Networks Using Spread-Spectrum Channel Coding

    No full text
    <p>The training and development of good deep learning models is often a challenging task, thus leading individuals (developers, researchers, and practitioners alike) to use third-party models residing in public repositories, fine-tuning these models to their needs usually with little-to-no effort. Despite its undeniable benefits, this practice can lead to new attack vectors. In this paper, we demonstrate the feasibility and effectiveness of one such attack, namely malware embedding in deep learning models. We push the boundaries of current state-of-the-art by introducing MaleficNet, a technique that combines spread-spectrum channel coding with error correction techniques, injecting malicious payloads in the parameters of deep neural networks, all while causing no degradation to the model's performance and successfully bypassing state-of-the-art detection and removal mechanisms. We believe this work will raise awareness against these new, dangerous, camouflaged threats, assist the research community and practitioners in evaluating the capabilities of modern machine learning architectures, and pave the way to research targeting the detection and mitigation of such threats.</p&gt

    Um robô linguista que ‘ouve’ e ‘fala’: Geolinguística, pln e tabelas hash em concurso

    No full text
    Este estudo tem o objetivo apresentar o robô de conversação Professor Tical numa dimensão mais ampla e com os recursos de síntese e comandos por voz. Tical, que se tornou operacional como protótipo durante do III Congresso Internacional de Dialetologia e Sociolinguística na UEL em 2014, continua sendo um campo de provas para aplicações de algumas teorias que mantém entre si um caráter interdisciplinar como Geolinguística (CARDOSO, 2014a, 2014b), Processamento de Linguagem Natural (RICH, 1993; SCHILDT, 1989; MANFIO; MORENO; BARBOSA, 2014a, 2014b) e Processamento de Dados (ZIVIANI, 1999). O ‘robô linguista’, mesmo dispondo de um banco de dados bastante limitado e apresentando várias falhas típicas de sistemas dessa natureza e dotados desses recursos, serviu grandemente para realizar testes relativos a todas as áreas de conhecimento envolvidas e mostrou-se funcional o suficiente para suscitar a necessidade de dar continuidade ao projeto e às pesquisas: ‘ouve’, ‘fala’, realiza buscas rápidas e ‘conhece linguística’.

    Evading behavioral classifiers: a comprehensive analysis on evading ransomware detection techniques

    No full text
    Recent progress in machine learning has led to promising results in behavioral malware detection. Behavioral modeling identifies malicious processes via features derived by their runtime behavior. Behavioral features hold great promise as they are intrinsically related to the functioning of each malware, and are therefore considered difficult to evade. Indeed, while a significant amount of results exists on evasion of static malware features, evasion of dynamic features has seen limited work. This paper examines the robustness of behavioral ransomware detectors to evasion and proposes multiple novel techniques to evade them. Ransomware behavior differs significantly from that of benign processes, making it an ideal best case for behavioral detectors, and a difficult candidate for evasion. We identify and propose a set of novel attacks that distribute the overall malware workload across a small set of independent, cooperating processes in order to avoid the generation of significant behavioral features. Our most effective attack decreases the accuracy of a state-of-the-art classifier from 98.6 to 0% using only 18 cooperating processes. Furthermore, we show our attacks to be effective against commercial ransomware detectors in a black-box setting. Finally, we evaluate a detector designed to identify our most effective attack, as well as discuss potential directions to mitigate our most advanced attack

    DOLOS: A Novel Architecture for Moving Target Defense

    No full text
    Moving Target Defense and Cyber Deception emerged in recent years as two key proactive cyber defense approaches, contrasting with the static nature of the traditional reactive cyber defense. The key insight behind these approaches is to impose an asymmetric disadvantage for the attacker by using deception and randomization techniques to create a dynamic attack surface. Moving Target Defense (MTD) typically relies on system randomization and diversification, while Cyber Deception is based on decoy nodes and fake systems to deceive attackers. However, current Moving Target Defense techniques are complex to manage and can introduce high overheads, while Cyber Deception nodes are easily recognized and avoided by adversaries. This paper presents DOLOS, a novel architecture that unifies Cyber Deception and Moving Target Defense approaches. DOLOS is motivated by the insight that deceptive techniques are much more powerful when integrated into production systems rather than deployed alongside them. DOLOS combines typical Moving Target Defense techniques, such as randomization, diversity, and redundancy, with cyber deception and seamlessly integrates them into production systems through multiple layers of isolation. We extensively evaluate DOLOS against a wide range of attackers, ranging from automated malware to professional penetration testers, and show that DOLOS is effective in slowing down attacks and protecting the integrity of production systems. We also provide valuable insights and considerations for the future development of MTD techniques based on our findings
    corecore