1,171 research outputs found

    A User Perception Model Concerning Safety and Security of Paratransit Services in Bandung, Indonesia

    Full text link
    Safety and security in public transportation, Angkutan Kota or paratransit included, are among the commonly poor aspects in Indonesia. The objective of this research is to describe user perception of safety and security aspects in paratransit operation and to develop a model to predict and explain user choice in the future when there is an improvement. Users stated that the conditions of safety and security could be categorized as fair to dangerous. Realizing the condition, users still want to use paratransit because they have no other mode and paratransit can easily be found. The main reason for safety problems was the low degree of awareness of the driver in operating the car, while the main reason for security problems was the low degree of law enforcement and limited number of policemen (security officers). Users stated that the most responsible stakeholder in safety and security was the operator (driver and owner) and the police. Each aspect has two models using binomial logistic regression, namely a model with and without experience of accidents or criminal incidents. All models seem quite appropriate ones, as shown by their statistical measurement. Incorporating user experience improved the model fitness and improved the model in describing traveler characteristics

    A Genetic Algorithm Based Finger Selection Scheme for UWB MMSE Rake Receivers

    Full text link
    Due to a large number of multipath components in a typical ultra wideband (UWB) system, selective Rake (SRake) receivers, which combine energy from a subset of multipath components, are commonly employed. In order to optimize system performance, an optimal selection of multipath components to be employed at fingers of an SRake receiver needs to be considered. In this paper, this finger selection problem is investigated for a minimum mean square error (MMSE) UWB SRake receiver. Since the optimal solution is NP hard, a genetic algorithm (GA) based iterative scheme is proposed, which can achieve near-optimal performance after a reasonable number of iterations. Simulation results are presented to compare the performance of the proposed finger selection algorithm with those of the conventional and optimal schemes.Comment: To appear in the Proc. IEEE International Conference on Ultrawideband (ICU-2005

    Impulse Radio Systems with Multiple Types of Ultra-Wideband Pulses

    Full text link
    Spectral properties and performance of multi-pulse impulse radio ultra-wideband systems with pulse-based polarity randomization are analyzed. Instead of a single type of pulse transmitted in each frame, multiple types of pulses are considered, which is shown to reduce the effects of multiple-access interference. First, the spectral properties of a multi-pulse impulse radio system is investigated. It is shown that the power spectral density is the average of spectral contents of different pulse shapes. Then, approximate closed-form expressions for bit error probability of a multi-pulse impulse radio system are derived for RAKE receivers in asynchronous multiuser environments. The theoretical and simulation results indicate that impulse radio systems that are more robust against multiple-access interference than a "classical" impulse radio system can be designed with multiple types of ultra-wideband pulses.Comment: To be presented at the 2005 Conference on Information Sciences and System

    Optimal and Suboptimal Finger Selection Algorithms for MMSE Rake Receivers in Impulse Radio Ultra-Wideband Systems

    Get PDF
    Convex relaxations of the optimal finger selection algorithm are proposed for a minimum mean square error (MMSE) Rake receiver in an impulse radio ultra-wideband system. First, the optimal finger selection problem is formulated as an integer programming problem with a non-convex objective function. Then, the objective function is approximated by a convex function and the integer programming problem is solved by means of constraint relaxation techniques. The proposed algorithms are suboptimal due to the approximate objective function and the constraint relaxation steps. However, they can be used in conjunction with the conventional finger selection algorithm, which is suboptimal on its own since it ignores the correlation between multipath components, to obtain performances reasonably close to that of the optimal scheme that cannot be implemented in practice due to its complexity. The proposed algorithms leverage convexity of the optimization problem formulations, which is the watershed between `easy' and `difficult' optimization problems.Comment: To appear in IEEE Wireless Communications and Networking Conference (WCNC 2005), New Orleans, LA, March 13-17, 200

    The Trade-off between Processing Gains of an Impulse Radio UWB System in the Presence of Timing Jitter

    Get PDF
    In time hopping impulse radio, NfN_f pulses of duration TcT_c are transmitted for each information symbol. This gives rise to two types of processing gain: (i) pulse combining gain, which is a factor NfN_f, and (ii) pulse spreading gain, which is Nc=Tf/TcN_c=T_f/T_c, where TfT_f is the mean interval between two subsequent pulses. This paper investigates the trade-off between these two types of processing gain in the presence of timing jitter. First, an additive white Gaussian noise (AWGN) channel is considered and approximate closed form expressions for bit error probability are derived for impulse radio systems with and without pulse-based polarity randomization. Both symbol-synchronous and chip-synchronous scenarios are considered. The effects of multiple-access interference and timing jitter on the selection of optimal system parameters are explained through theoretical analysis. Finally, a multipath scenario is considered and the trade-off between processing gains of a synchronous impulse radio system with pulse-based polarity randomization is analyzed. The effects of the timing jitter, multiple-access interference and inter-frame interference are investigated. Simulation studies support the theoretical results.Comment: To appear in the IEEE Transactions on Communication

    Ultra Wideband Impulse Radio Systems with Multiple Pulse Types

    Full text link
    In an ultra wideband (UWB) impulse radio (IR) system, a number of pulses, each transmitted in an interval called a "frame", is employed to represent one information symbol. Conventionally, a single type of UWB pulse is used in all frames of all users. In this paper, IR systems with multiple types of UWB pulses are considered, where different types of pulses can be used in different frames by different users. Both stored-reference (SR) and transmitted-reference (TR) systems are considered. First, the spectral properties of a multi-pulse IR system with polarity randomization is investigated. It is shown that the average power spectral density is the average of the spectral contents of different pulse shapes. Then, approximate closed-form expressions for the bit error probability of a multi-pulse SR-IR system are derived for RAKE receivers in asynchronous multiuser environments. The effects of both inter-frame interference (IFI) and multiple-access interference (MAI) are analyzed. The theoretical and simulation results indicate that SR-IR systems that are more robust against IFI and MAI than a "conventional" SR-IR system can be designed with multiple types of ultra-wideband pulses. Finally, extensions to multi-pulse TR-IR systems are briefly described.Comment: To appear in the IEEE Journal on Selected Areas in Communications - Special Issue on Ultrawideband Wireless Communications: Theory and Application

    Clustering and Triaxial Deformations of 40^{40}Ca

    Full text link
    We have studied the positive-parity states of 40^{40}Ca using antisymmetrized molecular dynamics (AMD) and the generator coordinate method (GCM). Imposing two different kinds of constraints on the variational calculation, we have found various kinds of 40Ca^{40}{\rm Ca} structures such as a deformed-shell structure, as well as α\alpha-36^{36}Ar and 12^{12}C-28^{28}Si cluster structures. After the GCM calculation, we obtained a normal-deformed band and a superdeformed band together with their side bands associated with triaxial deformation. The calculated B(E2)B(E2) values agreed well with empirical data. It was also found that the normal-deformed and superdeformed bands have a non-negligible α\alpha-36^{36}Ar cluster component and 12^{12}C-28^{28}Si cluster component, respectively. This leads to the presence of an α\alpha-36^{36}Ar higher-nodal band occurring above the normal-deformed band.Comment: 11pages, 9 figure

    Allelopathic potential of Acacia pennata (L.) Willd. leaf extracts against the seedling growth of six test plants

    Get PDF
    Acacia pennata (L.) Willd (Mimosaceae), a woody climbing plant, is used as a traditional medicinal plant in the South and Southeast Asia regions and has been documented to have various pharmacological effects. However, the allelopathy of this plant still remains unclear. Thus, the allelopathic potential of A. pennata leaf extracts was examined against the seedling growth of dicot plants [alfalfa (Medicago sativa L.), cress (Lepidium sativum L.), and lettuce (Lactuca sativa L.)] and monocot plants [barnyard grass (Echinochloa crus-galli (L.) Beauv.), Italian ryegrass (Lolium multiflorum Lam.), and timothy (Phleum pratense L.)] at six different concentrations. The results showed that the A. pennata leaf extracts inhibited the seedling growth of all the test plant species at concentrations ≥3 mg dry weight (D.W.) equivalent extract mL-1. The inhibitory activity of the extracts against both shoot and root growth varied with concentration and tested plants. The concentrations required for 50% inhibition of the test plant shoots and roots were 1.5-16.1 and 1.4-8.6 mg D.W. equivalent extract mL-1, respectively. The root growth of all the test plant species was more sensitive to the extracts than their shoot growth, except alfalfa. The results of the present study indicate that the A. pennata leaf extracts may have allelopathic potential and may contain allelopathic substances. Therefore, further studies are required for isolation and identification of the growth inhibitory substances which are responsible for the allelopathic effect of A. pennata

    Performance Evaluation of Impulse Radio UWB Systems with Pulse-Based Polarity Randomization

    Full text link
    In this paper, the performance of a binary phase shift keyed random time-hopping impulse radio system with pulse-based polarity randomization is analyzed. Transmission over frequency-selective channels is considered and the effects of inter-frame interference and multiple access interference on the performance of a generic Rake receiver are investigated for both synchronous and asynchronous systems. Closed form (approximate) expressions for the probability of error that are valid for various Rake combining schemes are derived. The asynchronous system is modelled as a chip-synchronous system with uniformly distributed timing jitter for the transmitted pulses of interfering users. This model allows the analytical technique developed for the synchronous case to be extended to the asynchronous case. An approximate closed-form expression for the probability of bit error, expressed in terms of the autocorrelation function of the transmitted pulse, is derived for the asynchronous case. Then, transmission over an additive white Gaussian noise channel is studied as a special case, and the effects of multiple-access interference is investigated for both synchronous and asynchronous systems. The analysis shows that the chip-synchronous assumption can result in over-estimating the error probability, and the degree of over-estimation mainly depends on the autocorrelation function of the ultra-wideband pulse and the signal-to-interference-plus-noise-ratio of the system. Simulations studies support the approximate analysis.Comment: To appear in the IEEE Transactions on Signal Processin
    corecore