99 research outputs found

    Activation of Natural Killer Cells and Dendritic Cells upon Recognition of a Novel CD99-like Ligand by Paired Immunoglobulin-like Type 2 Receptor

    Get PDF
    Paired receptors that consist of highly related activating and inhibitory receptors are widely involved in the regulation of the immune system. Here, we report a mouse orthologue of the human activating paired immunoglobulin-like type 2 receptor (PILR) β, which was cloned from a cDNA library of natural killer (NK) cells based on its ability to associate with the DAP12 signaling adaptor protein. The activating PILRβ was expressed not only on NK cells but also on dendritic cells and macrophages. Furthermore, we have identified a novel CD99-like molecule as a ligand for the activating PILRβ and inhibitory PILRα receptors. Transcripts of PILR ligand are present in many tissues, including some T cell lines. Cells expressing the PILR ligand specifically activated NK cells and dendritic cells that express the activating PILRβ. Our findings reveal a new regulatory mechanism of innate immunity by PILR and its CD99-like ligand

    A Novel Autoantibody against β2-Glycoprotein I/HLA Class II Complexes in Antiphospholipid Syndrome

    Get PDF
    We have found that a novel autoantibody against β2-glycoprotein I (β2GPI)/human leukocyte antigen (HLA) class II complexes (anti-β2GPI/HLA-DR) is involved in the pathogenesis of antiphospholipid syndrome (APS). It was also found that many APS patients who were negative for conventional antiphospholipid antibodies (aPLs) possessed anti-β2GPI/HLA-DR. These results suggested that anti-β2GPI/HLA-DR measurements may be more sensitive for diagnosing APS than conventional aPLs tests. Recurrent pregnancy loss (RPL) is one of the clinical manifestations of APS. Therefore, a prospective, multicenter, cross-sectional study were conducted to assess whether anti-β2GPI/HLA-DR is also associated with RPL. This study of 227 couples with RPL revealed that 22.9% (52/227) of RPL women tested positive for anti-β2GPI/HLA-DR, and 24 (19.8%) of the 121 couples with unexplained RPL tested positive for anti-β2GPI/HLA-DR. Interestingly, thirty-five of the 52 (67.3%) RPL patients who were positive for anti-β2GPI/HLA-DR possessed no conventional aPLs of criteria. This novel autoantibody against β2GPI/HLA class II complexes may be a major risk factor for RPL, and it may be a promising biomarker for diagnosing APS

    Positive and negative regulation of the Fcγ receptor–stimulating activity of RNA-containing immune complexes by RNase

    Get PDF
    The U1RNP complex, Ro/SSA, and La/SSB are major RNA-containing autoantigens. Immune complexes (ICs) composed of RNA-containing autoantigens and autoantibodies are suspected to be involved in the pathogenesis of some systemic autoimmune diseases. Therefore, RNase treatment, which degrades RNA in ICs, has been tested in clinical trials as a potential therapeutic agent. However, no studies to our knowledge have specifically evaluated the effect of RNase treatment on the Fcγ receptor–stimulating (FcγR-stimulating) activity of RNA-containing ICs. In this study, using a reporter system that specifically detects FcγR-stimulating capacity, we investigated the effect of RNase treatment on the FcγR-stimulating activity of RNA-containing ICs composed of autoantigens and autoantibodies from patients with systemic autoimmune diseases such as systemic lupus erythematosus. We found that RNase enhanced the FcγR-stimulating activity of Ro/SSA- and La/SSB-containing ICs, but attenuated that of the U1RNP complex–containing ICs. RNase decreased autoantibody binding to the U1RNP complex, but increased autoantibody binding to Ro/SSA and La/SSB. Our results suggest that RNase enhances FcγR activation by promoting the formation of ICs containing Ro/SSA or La/SSB. Our study provides insights into the pathophysiology of autoimmune diseases involving anti-Ro/SSA and anti-La/SSB autoantibodies, and into the therapeutic application of RNase treatment for systemic autoimmune diseases.Naito R., Ohmura K., Higuchi S., et al. Positive and negative regulation of the Fcγ receptor–stimulating activity of RNA-containing immune complexes by RNase. JCI Insight 8, e167799 (2023); https://doi.org/10.1172/jci.insight.167799

    NKG2D-mediated Natural Killer Cell Protection Against Cytomegalovirus Is Impaired by Viral gp40 Modulation of Retinoic Acid Early Inducible 1 Gene Molecules

    Get PDF
    Natural killer (NK) cells play a critical role in the innate immune response against cytomegalovirus (CMV) infections. Although CMV encodes several gene products committed to evasion of adaptive immunity, viral modulation of NK cell activity is only beginning to be appreciated. A previous study demonstrated that the mouse CMV m152-encoded gp40 glycoprotein diminished expression of ligands for the activating NK cell receptor NKG2D on the surface of virus-infected cells. Here we have defined the precise ligands that are affected and have directly implicated NKG2D in immune responses to CMV infection in vitro and in vivo. Murine CMV (MCMV) infection potently induced transcription of all five known retinoic acid early inducible 1 (RAE-1) genes (RAE-1α, RAE-1β, RAE-1δ, RAE-1ɛ, and RAE-1γ), but not H-60. gp40 specifically down-regulated the cell surface expression of all RAE-1 proteins, but not H-60, and diminished NK cell interferon γ production against CMV-infected cells. Consistent with previous findings, a m152 deletion mutant virus (Δm152) was less virulent in vivo than the wild-type Smith strain of MCMV. Treatment of BALB/c mice with a neutralizing anti-NKG2D antibody before infection increased titers of Δm152 virus in the spleen and liver to levels seen with wild-type virus. These experiments demonstrate that gp40 impairs NK cell recognition of virus-infected cells through disrupting the RAE-1–NKG2D interaction

    Molecular mechanism of the recognition of bacterially cleaved immunoglobulin by the immune regulatory receptor LILRA2

    Get PDF
    金沢大学医薬保健研究域薬学系Human leukocyte immunoglobulin-like receptors (LILRs) typically regulate immune activation by binding to the human leukocyte antigen class I molecules. LILRA2, a member of the LILR family, was recently reported to bind to other unique ligands, the bacterially degraded Igs (N-truncated Igs), for the activation of immune cells. Therefore, LILRA2 is currently attracting significant attention as a novel innate immune receptor. However, the detailed recognition mechanisms required for this interaction remain unclear. In this study, using several biophysical techniques, we uncovered the molecular mechanism of N-truncated Ig recognition by LILRA2. Surface plasmon resonance analysis disclosed that LILRA2 specifically binds to N-truncated Ig with weak affinity (Kd = 4.8 mM) and fast kinetics. However, immobilized LILRA2 exhibited a significantly enhanced interaction with N-truncated Ig due to avidity effects. This suggests that cell surface-bound LILRA2 rapidly monitors and identifies bi- or multivalent abnormal N-truncated Igs through specific cross-linking to induce immune activation. Van\u27t Hoff analysis revealed that this interaction is enthalpy-driven, with a small entropy loss, and results from differential scanning calorimetry indicated the instability of the putative LILRA2-binding site, the Fab region of the N-truncated Ig. Atomic force microscopy revealed that N truncation does not cause significant structural changes in Ig. Furthermore, mutagenesis analysis identified the hydrophobic region of LILRA2 domain 2 as the N-truncated Ig-binding site, representing a novel ligand-binding site for the LILR family. These results provide detailed insights into the molecular regulation of LILR-mediated immune responses targeting ligands that have been modified by bacteria. © 2020 Yamazaki et al. Published under exclusive license by The American Society for Biochemistry and Molecular Biology, Inc

    Binding and uptake of H-ferritin are mediated by human transferrin receptor-1

    Get PDF
    Ferritin is a spherical molecule composed of 24 subunits of two types, ferritin H chain (FHC) and ferritin L chain (FLC). Ferritin stores iron within cells, but it also circulates and binds specifically and saturably to a variety of cell types. For most cell types, this binding can be mediated by ferritin composed only of FHC (HFt) but not by ferritin composed only of FLC (LFt), indicating that binding of ferritin to cells is mediated by FHC but not FLC. By using expression cloning, we identified human transferrin receptor-1 (TfR1) as an important receptor for HFt with little or no binding to LFt. In vitro, HFt can be precipitated by soluble TfR1, showing that this interaction is not dependent on other proteins. Binding of HFt to TfR1 is partially inhibited by diferric transferrin, but it is hindered little, if at all, by HFE. After binding of HFt to TfR1 on the cell surface, HFt enters both endosomes and lysosomes. TfR1 accounts for most, if not all, of the binding of HFt to mitogen-activated T and B cells, circulating reticulocytes, and all cell lines that we have studied. The demonstration that TfR1 can bind HFt as well as Tf raises the possibility that this dual receptor function may coordinate the processing and use of iron by these iron-binding molecules

    Heme-Mediated SPI-C Induction Promotes Monocyte Differentiation into Iron-Recycling Macrophages

    Get PDF
    Splenic red pulp macrophages (RPM) degrade senescent erythrocytes and recycle heme-associated iron. The transcription factor SPI-C is selectively expressed by RPM and is required for their development, but the physiologic stimulus inducing Spic is unknown. Here, we report that Spic also regulated the development of F4/80^+VCAM1^+ bone marrow macrophages (BMM) and that Spic expression in BMM and RPM development was induced by heme, a metabolite of erythrocyte degradation. Pathologic hemolysis induced loss of RPM and BMM due to excess heme but induced Spic in monocytes to generate new RPM and BMM. Spic expression in monocytes was constitutively inhibited by the transcriptional repressor BACH1. Heme induced proteasome-dependent BACH1 degradation and rapid Spic derepression. Furthermore, cysteine-proline dipeptide motifs in BACH1 that mediate heme-dependent degradation were necessary for Spic induction by heme. These findings are the first example of metabolite-driven differentiation of a tissue-resident macrophage subset and provide new insights into iron homeostasis

    SARS-CoV-2 S2–targeted vaccination elicits broadly neutralizing antibodies

    Get PDF
    Several variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have emerged during the current coronavirus disease 2019 (COVID-19) pandemic. Although antibody cross-reactivity with the spike glycoproteins (S) of diverse coronaviruses, including endemic common cold coronaviruses (HCoVs), has been documented, it remains unclear whether such antibody responses, typically targeting the conserved S2 subunit, contribute to protection when induced by infection or through vaccination. Using a mouse model, we found that prior HCoV-OC43 S-targeted immunity primes neutralizing antibody responses to otherwise subimmunogenic SARS-CoV-2 S exposure and promotes S2-targeting antibody responses. Moreover, vaccination with SARS-CoV-2 S2 elicited antibodies in mice that neutralized diverse animal and human alphacoronaviruses and betacoronaviruses in vitro and provided a degree of protection against SARS-CoV-2 challenge in vivo. Last, in mice with a history of SARS-CoV-2 Wuhan-based S vaccination, further S2 vaccination induced broader neutralizing antibody response than booster Wuhan S vaccination, suggesting that it may prevent repertoire focusing caused by repeated homologous vaccination. These data establish the protective value of an S2-targeting vaccine and support the notion that S2 vaccination may better prepare the immune system to respond to the changing nature of the S1 subunit in SARS-CoV-2 variants of concern, as well as to future coronavirus zoonoses
    corecore