39 research outputs found

    Microfluidics for Production of Particles : Mechanism, Methodology, and Applications

    Get PDF
    In the past two decades, microfluidics-based particle production is widely applied for multiple biological usages. Compared to conventional bulk methods, microfluidic-assisted particle production shows significant advantages, such as narrower particle size distribution, higher reproducibility, improved encapsulation efficiency, and enhanced scaling-up potency. Herein, an overview of the recent progress of the microfluidics technology for nano-, microparticles or droplet fabrication, and their biological applications is provided. For both nano-, microparticles/droplets, the previously established mechanisms behind particle production via microfluidics and some typical examples during the past five years are discussed. The emerging interdisciplinary technologies based on microfluidics that have produced microparticles or droplets for cellular analysis and artificial cells fabrication are summarized. The potential drawbacks and future perspectives are also briefly discussed.Peer reviewe

    Properties and chemical modifications of lignin : Towards lignin-based nanomaterials for biomedical applications

    Get PDF
    Biorenewable polymers have emerged as an attractive alternative to conventional metallic and organic materials for a variety of different applications. This is mainly because of their biocompatibility, biodegradability and low cost of production. Lignocellulosic biomass is the most promising renewable carbon-containing source on Earth. Depending on the origin and species of the biomass, lignin consists of 20-35% of the lignocellulosic biomass. After it has been extracted, lignin can be modified through diverse chemical reactions. There are different categories of chemical modifications, such as lignin depolymerization or fragmentation, modification by synthesizing new chemically active sites, chemical modification of the hydroxyl groups, and the production of lignin graft copolymers. Lignin can be used for different industrial and biomedical applications, including biofuels, chemicals and polymers, and the development of nanomaterials for drug delivery but these uses depend on the source, chemical modifications and physicochemical properties. We provide an overview on the composition and properties, extraction methods and chemical modifications of lignin in this review. Furthermore, we describe different preparation methods for lignin-based nanomaterials with antioxidant UV-absorbing and antimicrobial properties that can be used as reinforcing agents in nanocomposites, in drug delivery and gene delivery vehicles for biomedical applications. (C) 2017 Elsevier Ltd. All rights reserved.Peer reviewe

    Investigation of municipal solid waste (MSW) and industrial landfills as a potential source of secondary raw materials

    Get PDF
    Many of the secondary raw materials (SRM) in landfills constitute valuable and scarce natural resources. It has already been recognised that the recovery of these elements is critical for the sustainability of a number of industries and SRM recov¬ery from anthropogenic waste deposits represents a significant opportunity. In this study, the characterisation of the different waste fractions and the amount of SRM that can potentially be recovered from two landfill sites in Finland is presented. The first site was a municipal solid waste (MSW) landfill site and it was specifically in¬vestigated for its metals, SRM, plastics, wood, paper, and cardboard content as well as its fine fraction (<20 mm). The second site was an industrial landfill site contain¬ing residual wastes from industrial processes including 1) aluminium salt slag from refining process of aluminium scrap and 2) shredding residues from automobiles, household appliances and other metals containing waste. This site was investigated for its metals and SRM recovery potential as well as its fine fraction. Results suggest that the fine fraction offers opportunities for metal (Cr, Cu, Ni, Pb, and Zn) and SRM extraction and recovery from both landfill site types while the chemical composition of the industrial waste landfill offered greater opporutinity as it was comparable to typical aluminium salt slags. Nevertheless, the concentrations of rare earth metals (REE) and other valuable elements were low even in comparison with the concentra¬tions found in the Earth’s crust. Therefore mining landfill sites only for their metals or SRM content is not expected to be financially viable. However, other opportunities, such as waste-derived fuels from excavated materials especially at MSW landfill sites, still exists and fosters the application and feasibility of landfill mining

    Surface Adsorption-Mediated Ultrahigh Efficient Peptide Encapsulation with a Precise Ratiometric Control for Type 1 and 2 Diabetic Therapy

    Get PDF
    A surface adsorption strategy is developed to enable the engineering of microcomposites featured with ultrahigh loading capacity and precise ratiometric control of co-encapsulated peptides. In this strategy, peptide molecules (insulin, exenatide, and bivalirudin) are formulated into nanoparticles and their surface is decorated with carrier polymers. This polymer layer blocks the phase transfer of peptide nanoparticles from oil to water and, consequently, realizes ultrahigh peptide loading degree (up to 78.9%). After surface decoration, all three nanoparticles are expected to exhibit the properties of adsorbed polymer materials, which enables the co-encapsulation of insulin, exenatide, and bivalirudin with a precise ratiometric control. After solidification of this adsorbed polymer layer, the release of peptides is synchronously prolonged. With the help of encapsulation, insulin achieves 8 days of glycemic control in type 1 diabetic rats with one single injection. The co-delivery of insulin and exenatide (1:1) efficiently controls the glycemic level in type 2 diabetic rats for 8 days. Weekly administration of insulin and exenatide co-encapsulated microcomposite effectively reduces the weight gain and glycosylated hemoglobin level in type 2 diabetic rats. The surface adsorption strategy sets a new paradigm to improve the pharmacokinetic and pharmacological performance of peptides, especially for the combination of peptides.Peer reviewe

    Close-loop dynamic nanohybrids on collagen-ark with in situ gelling transformation capability for biomimetic stage-specific diabetic wound healing

    Get PDF
    Here, an oxidation/acid dual-responsive nanohybrids/ark system was produced. The microfluidics-produced nanohybrids endow the system with an orchestrated cascade from wound detection, reactive oxygen species scavenging, drug release to hydrogel formation. The drug release behavior imitates the dynamic wound healing process, thus rendering an enhanced bio-mimetic regeneration.Peer reviewe

    Recombination Monophosphoryl Lipid A-Derived Vacosome for the Development of Preventive Cancer Vaccines

    Get PDF
    Recently, there has been an increasing interest for utilizing the host immune system to fight against cancer. Moreover, cancer vaccines, which can stimulate the host immune system to respond to cancer in the long term, are being investigated as a promising approach to induce tumor-specific immunity. In this work, we prepared an effective cancer vaccine (denoted as vacosome) by reconstructing the cancer cell membrane, monophosphoryl lipid A as a toll-like receptor 4 agonist, and egg phosphatidylcholine. The vacosome triggered and enhanced bone marrow dendritic cell maturation as well as stimulated the antitumor response against breast cancer 4T1 cells in vitro. Furthermore, an immune memory was established in BALB/c mice after three-time preimmunization with the vacosome. After that, the immunized mice showed inhibited tumor growth and prolonged survival period (longer than 50 days). Overall, our results demonstrate that the vacosome can be a potential candidate for clinical translation as a cancer vaccine.Peer reviewe

    Inhibiting Phase Transfer of Protein Nanoparticles by Surface Camouflage-A Versatile and Efficient Protein Encapsulation Strategy

    Get PDF
    Engineering a system with a high mass fraction of active ingredients, especially water-soluble proteins, is still an ongoing challenge. In this work, we developed a versatile surface camouflage strategy that can engineer systems with an ultrahigh mass fraction of proteins. By formulating protein molecules into nanoparticles, the demand of molecular modification was transformed into a surface camouflage of protein nanoparticles. Thanks to electrostatic attractions and van der Waals interactions, we camouflaged the surface of protein nanoparticles through the adsorption of carrier materials. The adsorption of carrier materials successfully inhibited the phase transfer of insulin, albumin, β-lactoglobulin, and ovalbumin nanoparticles. As a result, the obtained microcomposites featured with a record of protein encapsulation efficiencies near 100% and a record of protein mass fraction of 77%. After the encapsulation in microcomposites, the insulin revealed a hypoglycemic effect for at least 14 d with one single injection, while that of insulin solution was only ∼4 h.Peer reviewe

    Artificially Cloaked Viral Nanovaccine for Cancer Immunotherapy

    Get PDF
    Virus-based cancer vaccines are nowadays considered an interesting approach in the field of cancer immunotherapy, despite the observation that the majority of the immune responses they elicit are against the virus and not against the tumor. In contrast, targeting tumor associated antigens is effective, however the identification of these antigens remains challenging. Here, we describe ExtraCRAd, a multi-vaccination strategy focused on an oncolytic virus artificially wrapped with tumor cancer membranes carrying tumor antigens. We demonstrate that ExtraCRAd displays increased infectivity and oncolytic effect in vitro and in vivo. We show that this nanoparticle platform controls the growth of aggressive melanoma and lung tumors in vivo both in preventive and therapeutic setting, creating a highly specific anti-cancer immune response. In conclusion, ExtraCRAd might serve as the next generation of personalized cancer vaccines with enhanced features over standard vaccination regimens, representing an alternative way to target cancer.Peer reviewe

    Multistage signal-interactive nanoparticles improve tumor targeting through efficient nanoparticle-cell communications

    Get PDF
    Communication between biological components is critical for homeostasis maintenance among the convergence of complicated bio-signals. For therapeutic nanoparticles (NPs), the general lack of effective communication mechanisms with the external cellular environment causes loss of homeostasis, resulting in deprived autonomy, severe macrophage-mediated clearance, and limited tumor accumulation. Here, we develop a multistage signal-interactive system on porous silicon particles through integrating the Self-peptide and Tyr-Ile-Gly-Ser-Arg (YIGSR) peptide into a hierarchical chimeric signaling interface with “don’t eat me” and “eat me” signals. This biochemical transceiver can act as both the signal receiver for amantadine to achieve NP transformation and signal conversion as well as the signal source to present different signals sequentially by reversible self-mimicking. Compared with the non-interactive controls, these signal-interactive NPs loaded with AS1411 and tanespimycin (17-AAG) as anticancer drugs improve tumor targeting 2.8-fold and tumor suppression 6.5-fold and showed only 51% accumulation in the liver with restricted hepatic injury.</p

    Influence of Cell Membrane Wrapping on the Cell-Porous Silicon Nanoparticle Interactions

    Get PDF
    Biohybrid nanosystems represent the cutting-edge research in biofunctionalization of micro- and nano-systems. Their physicochemical properties bring along advantages in the circulation time, camouflaging from the phagocytes, and novel antigens. This is partially a result of the qualitative differences in the protein corona, and the preferential targeting and uptake in homologous cells. However, the effect of the cell membrane on the cellular endocytosis mechanisms and time has not been fully evaluated yet. Here, the effect is assessed by quantitative flow cytometry analysis on the endocytosis of hydrophilic, negatively charged porous silicon nanoparticles and on their membrane-coated counterparts, in the presence of chemical inhibitors of different uptake pathways. Principal component analysis is used to analyze all the data and extrapolate patterns to highlight the cell-specific differences in the endocytosis mechanisms. Furthermore, the differences in the composition of static protein corona between naked and coated particles are investigated together with how these differences affect the interaction with human macrophages. Overall, the presence of the cell membrane only influences the speed and the entity of nanoparticles association with the cells, while there is no direct effect on the endocytosis pathways, composition of protein corona, or any reduction in macrophage-mediated uptake
    corecore