5 research outputs found

    Protein Folding in Archaea

    Get PDF
    Chaperonins are a specific class of barrel-shaped chaperones, present in almost all organisms. Newly synthesized proteins encapsulated by the chaperonin can attain their native structure unimpaired by aggregation during repeated cycles of ATP-dependent binding and release. Chaperonins are generally divided into two groups. Group I chaperonins, such as the barrel-shaped GroEL oligomer, are found predominantly in bacteria and cooperate with cofactors of the Hsp10 familly (i.e. GroES). The Group II chaperonins, on the other hand, do not require a Hsp10- cofactor and are found in the eukaryotic cytosol and in archaea. The function of GroEL is understood in great detail and the substrate interaction proteome has been recently identified. In contrast, our knowledge about the natural substrates of Group II chaperonins is deficient and as a consequence, mechanistical studies on Group II chaperonins have been limited to using the eukaryotic model substrates actin and tubulin as well as heterologous model substrates. In the present study, the complete substrate spectrum of a Group II chaperonin, the thermosome (Ths) of the mesophilic archaeon Methanosarcina mazei (M. mazei), was analysed for the first time. In addition, the unique coexistence of both the goup I and the group II chaperonins in M. mazei, which was confirmed in the initial part of the study, provided the opportunity to obtain new insights into how the substrate selection differs between the two chaperonin groups. For these purposes, the chaperonin substrates were isolated by immunoprecipitation of the chaperonin-substrate complexes and identified by liquid chromatography coupled mass spectrometry (LC-MS) using three different approaches: LC-MS after separation of the proteins (i) by classical 2D-PAGE, (ii) by difference gel electrophoresis (Ettan DIGE) and (iii) by 1D-PAGE. Analysis of substrates of both the thermosome (MmThs) and GroEL/GroES (MmGroEL, MmGroES) of M. mazei revealed that each chaperonin handles a defined set of substrates, and both chaperonins contribute to the folding of ~17% of the proteins in the archaeal cytosol. Bioinformatic analysis revealed that the chaperonin specificity is governed by a combination of a various physical properties (hydrophobicity, net charge and size), structural features (i.e. the domain fold), and less concrete characteristics like the evolutionary status and, in this context, the phylogenetic origin of the substrate

    Lytic Water Dynamics Reveal Evolutionarily Conserved Mechanisms of ATP Hydrolysis by TIP49 AAA+ ATPases

    Get PDF
    SummaryEukaryotic TIP49a (Pontin) and TIP49b (Reptin) AAA+ ATPases play essential roles in key cellular processes. How their weak ATPase activity contributes to their important functions remains largely unknown and difficult to analyze because of the divergent properties of TIP49a and TIP49b proteins and of their homo- and hetero-oligomeric assemblies. To circumvent these complexities, we have analyzed the single ancient TIP49 ortholog found in the archaeon Methanopyrus kandleri (mkTIP49). All-atom homology modeling and molecular dynamics simulations validated by biochemical assays reveal highly conserved organizational principles and identify key residues for ATP hydrolysis. An unanticipated crosstalk between Walker B and Sensor I motifs impacts the dynamics of water molecules and highlights a critical role of trans-acting aspartates in the lytic water activation step that is essential for the associative mechanism of ATP hydrolysis

    Spt4/5 stimulates transcription elongation through the RNA polymerase clamp coiled-coil motif

    Get PDF
    Spt5 is the only known RNA polymerase-associated factor that is conserved in all three domains of life. We have solved the structure of the Methanococcus jannaschii Spt4/5 complex by X-ray crystallography, and characterized its function and interaction with the archaeal RNAP in a wholly recombinant in vitro transcription system. Archaeal Spt4 and Spt5 form a stable complex that associates with RNAP independently of the DNA–RNA scaffold of the elongation complex. The association of Spt4/5 with RNAP results in a stimulation of transcription processivity, both in the absence and the presence of the non-template strand. A domain deletion analysis reveals the molecular anatomy of Spt4/5—the Spt5 Nus-G N-terminal (NGN) domain is the effector domain of the complex that both mediates the interaction with RNAP and is essential for its elongation activity. Using a mutagenesis approach, we have identified a hydrophobic pocket on the Spt5 NGN domain as binding site for RNAP, and reciprocally the RNAP clamp coiled-coil motif as binding site for Spt4/5
    corecore