686 research outputs found

    Sources Of Student Engagement In Introductory Physics For Life Sciences

    Get PDF
    We explore the sources of student engagement with curricular content in an Introductory Physics for Life Science (IPLS) course at Swarthmore College. Do IPLS students find some life-science contexts more interesting than others, and, if so, what are the sources of these differences? We draw on three sources of student data to answer this question: (1) quantitative survey data illustrating how interested students were in particular contexts from the curriculum, (2) qualitative survey data in which students describe the source of their interest in these particular contexts, and (3) interview data in which students reflect on the contexts that were and were not of interest to them. We find that examples that make interdisciplinary connections with students’ other coursework in biology and chemistry, and examples that make connections to what students perceive to be the “real world,” are particularly effective at fostering interest. More generally, students describe being deeply engaged with contexts that foster a sense of coherence or have personal meaning to them. We identify various “engagement pathways” by which different life-science students engage with IPLS content, and suggest that a curriculum needs to be flexible enough to facilitate these different pathways

    Collective Fluorescence Enhancement In Nanoparticle Clusters

    Get PDF
    Many nanoscale systems are known to emit light intermittently under continuous illumination. In the fluorescence of single semiconductor nanoparticles, the distributions of bright and dark periods (\u27on\u27 and \u27off\u27 times) follow Levy statistics. Although fluorescence from single-quantum dots and from macroscopic quantum dot ensembles has been studied, there has been little study of fluorescence from small ensembles. Here we show that blinking nanorods (NRs) interact with each other in a cluster, and the interactions affect the blinking statistics. The on-times in the fluorescence of a NR cluster increase dramatically; in a cluster with N NRs, the maximum on-time increases by a factor of N or more compared with the combined signal from N well-separated NRs. Our study emphasizes the use of statistical properties in identifying the collective dynamics. The scaling of this interaction-induced increase of on-times with number of NRs reveals a novel collective effect at the nanoscale

    Density of States and NMR Relaxation Rate in Anisotropic Superconductivity with Intersecting Line Nodes

    Full text link
    We show that the density of states in an anisotropic superconductor with intersecting line nodes in the gap function is proportional to Elog(αΔ0/E)E log (\alpha \Delta_0 /E) for ∣E∣<<Δ0|E| << \Delta_0, where Δ0\Delta_0 is the maximum value of the gap function and α\alpha is constant, while it is proportional to EE if the line nodes do not intersect. As a result, a logarithmic correction appears in the temperature dependence of the NMR relaxation rate and the specific heat, which can be observed experimentally. By comparing with those for the heavy fermion superconductors, we can obtain information about the symmetry of the gap function.Comment: 7 pages, 4 PostScript Figures, LaTeX, to appear in J. Phys. Soc. Jp

    Stratified horizontal flow in vertically vibrated granular layers

    Full text link
    A layer of granular material on a vertically vibrating sawtooth-shaped base exhibits horizontal flow whose speed and direction depend on the parameters specifying the system in a complex manner. Discrete-particle simulations reveal that the induced flow rate varies with height within the granular layer and oppositely directed flows can occur at different levels. The behavior of the overall flow is readily understood once this novel feature is taken into account.Comment: 4 pages, 6 figures, submitte

    On Bisimilarity and Substitution in Presence of Replication

    Get PDF
    International audienceWe prove a new congruence result for the pi-calculus: bisimilarity is a congruence in the sub-calculus that does not include restriction nor sum, and features top-level replications. Our proof relies on algebraic properties of replication, and on a new syntactic characterisation of bisimilarity. We obtain this characterisation using a rewriting system rather than a purely equational axiomatisation. We then deduce substitution closure, and hence, congruence. Whether bisimilarity is a congruence when replications are unrestricted remains open

    Twist Deformations of the Supersymmetric Quantum Mechanics

    Full text link
    The N-extended Supersymmetric Quantum Mechanics is deformed via an abelian twist which preserves the super-Hopf algebra structure of its Universal Enveloping Superalgebra. Two constructions are possible. For even N one can identify the 1D N-extended superalgebra with the fermionic Heisenberg algebra. Alternatively, supersymmetry generators can be realized as operators belonging to the Universal Enveloping Superalgebra of one bosonic and several fermionic oscillators. The deformed system is described in terms of twisted operators satisfying twist-deformed (anti)commutators. The main differences between an abelian twist defined in terms of fermionic operators and an abelian twist defined in terms of bosonic operators are discussed.Comment: 18 pages; two references adde

    On Almost Future Temporal Logics

    Full text link
    Dedicated to Yuri Gurevich on the occasion of his 75th birthday Abstract. Kamp’s theorem established the expressive completeness of the temporal modalities Until and Since for the First-Order Monadic Logic of Order (FOMLO) over real and natural time flows. Over natural time, a single future modality (Until) is sufficient to express all future FOMLO formulas. These are formulas whose truth value at any moment is determined by what happens from that moment on. Yet this fails to extend to real time domains: here no finite basis of future modalities can express all future FOMLO formulas. Almost future formulas extend future formulas; they depend just on the very very near past, and are independent of the rest of the past. For almost future formulas finiteness is recovered over Dedekind complete time flows. In this paper we show that there is no temporal logic with finitely many modalities which is expressively complete for the almost future fragment of FOMLO over all linear flows.

    Teaching the electrical origins of the electrocardiogram: An introductory physics laboratory for life science students

    Get PDF
    We present the design, pedagogical logic, and assessment of a laboratory and supporting materials that integrate a clinical academic cardiologist\u27s understanding of the origins of the electrocardiogram (ECG) with a physics educator\u27s insights into how to teach the underlying physics at the introductory level to life science students. In this article, we explain the choices made throughout the design process, connect a more advanced treatment of the physics to our approach, and present our assessment of the curriculum. Before the laboratory, students learn the cellular origins of the electric dipole potential produced by the heart on the body\u27s surface, including a simple physical model for the electrical activity of excitable cells, and learn to interpret the measured voltages of an ECG as probing components of the heart\u27s time-varying electric dipole moment. In the laboratory, students measure their own ECGs and analyze the data accordingly; they animate their data to display their own heart\u27s dipole moment for a single heartbeat. Our results from the assessment of student understanding and attitudes indicate that although students find the content challenging, nearly all students find it at least moderately interesting, and for about a quarter of the students in the course, this lab plays a highly meaningful part in connecting physics to medicine
    • 

    corecore