1,306 research outputs found
Continuous symmetry of C60 fullerene and its derivatives
Conventionally, the Ih symmetry of fullerene C60 is accepted which is
supported by numerous calculations. However, this conclusion results from the
consideration of the molecule electron system, of its odd electrons in
particular, in a close-shell approximation without taking the electron spin
into account. Passing to the open-shell approximation has lead to both the
energy and the symmetry lowering up to Ci. Seemingly contradicting to a
high-symmetry pattern of experimental recording, particularly concerning the
molecule electronic spectra, the finding is considered in the current paper
from the continuous symmetry viewpoint. Exploiting both continuous symmetry
measure and continuous symmetry content, was shown that formal Ci symmetry of
the molecule is by 99.99% Ih. A similar continuous symmetry analysis of the
fullerene monoderivatives gives a reasonable explanation of a large variety of
their optical spectra patterns within the framework of the same C1 formal
symmetry exhibiting a strong stability of the C60 skeleton.Comment: 11 pages. 5 figures. 6 table
Recommended from our members
Biases in the perceived timing of perisaccadic perceptual and motor events
Subjects typically experience the temporal interval immediately following a saccade as longer than a comparable control interval. One explanation of this effect is that the brain antedates the perceptual onset of a saccade target to around the time of saccade initiation. This could explain the apparent continuity of visual perception across eye movements. Thisantedating account was tested in three experiments in which subjects made saccades of differing extents and then judged either the duration or the temporal order of key events. Postsaccadic stimuli underwent subjective temporal lengthening and had early perceived onsets. A temporally advanced awareness of saccade completion was also found, independently of antedating effects. These results provide convergent evidence supporting antedating and differentiating it from other temporal biases
Dental management considerations for the patient with an acquired coagulopathy. Part 1: Coagulopathies from systemic disease
Current teaching suggests that many patients are at risk for prolonged bleeding during and following invasive dental procedures, due to an acquired coagulopathy from systemic disease and/or from medications. However, treatment standards for these patients often are the result of long-standing dogma with little or no scientific basis. The medical history is critical for the identification of patients potentially at risk for prolonged bleeding from dental treatment. Some time-honoured laboratory tests have little or no use in community dental practice. Loss of functioning hepatic, renal, or bone marrow tissue predisposes to acquired coagulopathies through different mechanisms, but the relationship to oral haemostasis is poorly understood. Given the lack of established, science-based standards, proper dental management requires an understanding of certain principles of pathophysiology for these medical conditions and a few standard laboratory tests. Making changes in anticoagulant drug regimens are often unwarranted and/or expensive, and can put patients at far greater risk for morbidity and mortality than the unlikely outcome of postoperative bleeding. It should be recognised that prolonged bleeding is a rare event following invasive dental procedures, and therefore the vast majority of patients with suspected acquired coagulopathies are best managed in the community practice setting
Kinetic Energy, Condensation Energy, Optical Sum Rule and Pairing Mechanism in High-Tc Cuprates
The mechanism of high-Tc superconductivity is investigated with interests on
the microscopic aspects of the condensation energy. The theoretical analysis is
performed on the basis of the FLEX approximation which is a microscopic
description of the spin-fluctuation-induced-superconductivity. Most of phase
transitions in strongly correlated electron system arise from the correlation
energy which is copmetitive to the kinetic energy. However, we show that the
kinetic energy cooperatively induces the superconductivity in the underdoped
region. This unusual decrease of kinetic energy below T_c is induced by the
feedback effect. The feedback effect induces the magnetic resonance mode as
well as the kink in the electronic dispersion, and alters the properties of
quasi-particles, such as mass renormalization and lifetime. The crossover from
BCS behavior to this unusual behavior occurs for hole dopings. On the other
hand, the decrease of kinetic energy below T_c does not occur in the
electron-doped region. We discuss the relation to the recent obserbation of the
violation of optical sum rule
Renormalization Group Induced Neutrino Mass in Supersymmetry without R-parity
We study supersymmetric models without R parity and with universal soft
supersymmetry breaking terms. We show that as a result of the renormalization
group flow of the parameters, a misalignment between the directions in field
space of the down-type Higgs vacuum expectation value and of the
term is always generated. This misalignment induces a mixing between the
neutrinos and the neutralinos, resulting in one massive neutrino. By means of a
simple approximate analytical expression, we study the dependence on the
different parameters that contribute to the misalignment and to . In
large part of the parameter space this effect dominates over the standard
one-loop contributions to ; we estimate 1 MeV \lsim m_\nu \lsim 1 GeV.
Laboratory, cosmological and astrophysical constraints imply m_\nu \lsim 100
eV. To be phenomenologically viable, these models must be supplemented with
some additional mechanism to ensure approximate alignment and to suppress
.Comment: 21 pages, LaTex. Few points clarified, results unchanged. Final
version to appear on Physical Review
Charge pairing, superconducting transition and supersymmetry in high-temperature cuprate superconductors
We propose a model for high-T superconductors, valid for
, that includes both the spin fluctuations of the
Cu magnetic ions and of the O doped holes. Spin-charge separation
is taken into account with the charge of the doped holes being associated to
quantum skyrmion excitations (holons) of the Cu spin background. The
holon effective interaction potential is evaluated as a function of doping,
indicating that Cooper pair formation is determined by the competition between
the spin fluctuations of the Cu background and of spins of the O
doped holes (spinons). The superconducting transition occurs when the spinon
fluctuations dominate, thereby reversing the sign of the interaction. At this
point (), the theory is supersymmetric at short distances
and, as a consequence, the leading order results are not modified by radiative
corrections. The critical doping parameter for the onset of superconductivity
at T=0 is obtained and found to be a universal constant determined by the shape
of the Fermi surface. Our theoretical values for are in good
agreement with the experiment for both LSCO and YBCO.Comment: RevTex, 4 pages, no figure
A quantum Monte Carlo study of the one-dimensional ionic Hubbard model
Quantum Monte Carlo methods are used to study a quantum phase transition in a
1D Hubbard model with a staggered ionic potential (D). Using recently
formulated methods, the electronic polarization and localization are determined
directly from the correlated ground state wavefunction and compared to results
of previous work using exact diagonalization and Hartree-Fock. We find that the
model undergoes a thermodynamic transition from a band insulator (BI) to a
broken-symmetry bond ordered (BO) phase as the ratio of U/D is increased. Since
it is known that at D = 0 the usual Hubbard model is a Mott insulator (MI) with
no long-range order, we have searched for a second transition to this state by
(i) increasing U at fixed ionic potential (D) and (ii) decreasing D at fixed U.
We find no transition from the BO to MI state, and we propose that the MI state
in 1D is unstable to bond ordering under the addition of any finite ionic
potential. In real 1D systems the symmetric MI phase is never stable and the
transition is from a symmetric BI phase to a dimerized BO phase, with a
metallic point at the transition
Reconfiguration, contestation, and decline: conceptualizing mature large technical systems
Large technical systems (LTS) are integral to modern lifestyles but arduous to analyze. In this paper, we advance a conceptualization of LTS using the notion of mature “phases,” drawing from insights into innovation studies, science and technology studies, political science, the sociology of infra- structure, history of technology, and governance. We begin by defining LTS as a unit of analysis and explaining its conceptual utility and novelty, situating it among other prominent sociotechnical theories. Next, we argue that after LTS have moved through the (overlapping) phases proposed by Thomas Hughes of invention, expansion, growth, momentum, and style,mature LTS undergo the additional (overlapping) phases of reconfiguration, contestation (subject to pressures such as drift and crisis), and eventually stagnation and decline. We illustrate these analytical phases with historical case studies and the conceptual literature, and close by suggesting future research to refine and develop the LTS framework, particularly related to more refined typologies, temporal dimensions, and a broadening of system users. We aim to contribute to theoretical debates about the coevolution of LTS as well as empirical discussions about system-related use, socio- technical change, and policy-making
Reversible magnetization of MgB2 single crystals with a two-gap nature
We present reversible magnetization measurements on MgB2 single crystals in
magnetic fields up to 2.5 T applied parallel to the crystal's c-axis. This
magnetization is analyzed in terms of the Hao-Clem model, and various
superconducting parameters, such as the critical fields [Hc(0) and Hc2(0)], the
characteristic lengths [xi(0) and lambda(0)], and the Ginzburg-Landau
parameter, kappa, are derived. The temperature dependence of the magnetic
penetration depth, lambda(T), obtained from the Hao-Clem analysis could not be
explained by theories assuming a single gap. Our data are well described by
using a two-gap model.Comment: 20 pages, 1 table, 4 figures, will be published in Phys. Rev.
- …