1,258 research outputs found
Mismatch negativity indexes illness-specific impairments of cortical plasticity in schizophrenia: a comparison with bipolar disorder and Alzheimer's disease.
Cognitive impairment is an important predictor of functional outcome in patients with schizophrenia, yet its neurobiology is still incompletely understood. Neuropathological evidence of impaired synaptic connectivity and NMDA receptor-dependent transmission in superior temporal cortex motivated us to explore the correlation of in vivo mismatch negativity (MMN) with cognitive status in patients with schizophrenia. MMN elicited in a roving stimulus paradigm displayed a response proportional to the number of stimulus repetitions (memory trace effect). Preliminary evidence in patients with chronic schizophrenia suggests that attenuation of this MMN memory trace effect was correlated with the degree of neuropsychological memory dysfunction. Here we present data from a larger confirmatory study in patients with schizophrenia, bipolar disorder, probable Alzheimer's disease and healthy controls. We observed that the diminution of the MMN memory trace effect and its correlation with memory impairment was only found in the schizophrenia group. Recent pharmacological studies using the roving paradigm suggest that attenuation of the MMN trace effect can be understood as abnormal modulation of NMDA receptor-dependent plasticity. We suggest that the convergence of the previously identified synaptic pathology in supragranular cortical layers with the intracortical locus of MMN generation accounts for the remarkable robustness of MMN impairments in schizophrenia. We further speculate that this layer-specific synaptic pathology identified in supragranular neurons plays a pivotal computational role, by weakening the encoding and propagation of prediction errors to higher cortical modules. According to predictive coding theory such breakdown will have grave implications not only for perception, but also for higher-order cognition and may thus account for the MMN-cognition correlations observed here. Finally, MMN is a sensitive and specific biomarker for detecting the early prodromal phase of schizophrenia and is well suited for the exploration of novel cognition-enhancing agents in humans
The Ursinus Weekly, September 28, 1914
Ursinus loses to Cornell • New members of the faculty • Student activities of the week • Alma mater • The library • Literary societies • College directory • New students at Ursinus • Joint meeting of Christian associations • The class of 1914https://digitalcommons.ursinus.edu/weekly/2635/thumbnail.jp
Stratorotational instability in MHD Taylor-Couette flows
The stability of dissipative Taylor-Couette flows with an axial stable
density stratification and a prescribed azimuthal magnetic field is considered.
Global nonaxisymmetric solutions of the linearized MHD equations with toroidal
magnetic field, axial density stratification and differential rotation are
found for both insulating and conducting cylinder walls. Flat rotation laws
such as the quasi-Kepler law are unstable against the nonaxisymmetric
stratorotational instability (SRI). The influence of a current-free toroidal
magnetic field depends on the magnetic Prandtl number Pm: SRI is supported by
Pm > 1 and it is suppressed by Pm \lsim 1. For too flat rotation laws a smooth
transition exists to the instability which the toroidal magnetic field produces
in combination with the differential rotation. This nonaxisymmetric azimuthal
magnetorotational instability (AMRI) has been computed under the presence of an
axial density gradient. If the magnetic field between the cylinders is not
current-free then also the Tayler instability occurs and the transition from
the hydrodynamic SRI to the magnetic Tayler instability proves to be rather
complex. Most spectacular is the `ballooning' of the stability domain by the
density stratification: already a rather small rotation stabilizes magnetic
fields against the Tayler instability. An azimuthal component of the resulting
electromotive force only exists for density-stratified flows. The related
alpha-effect for magnetic SRI of Kepler rotation appears to be positive for
negative d\rho/dz <0.Comment: 10 pages, 13 figures, submitted to Astron. Astrophy
A Large Scale Double Beta and Dark Matter Experiment: GENIUS
The recent results from the HEIDELBERG-MOSCOW experiment have demonstrated
the large potential of double beta decay to search for new physics beyond the
Standard Model. To increase by a major step the present sensitivity for double
beta decay and dark matter search much bigger source strengths and much lower
backgrounds are needed than used in experiments under operation at present or
under construction. We present here a study of a project proposed recently,
which would operate one ton of 'naked' enriched GErmanium-detectors in liquid
NItrogen as shielding in an Underground Setup (GENIUS). It improves the
sensitivity to neutrino masses to 0.01 eV. A ten ton version would probe
neutrino masses even down to 10^-3 eV. The first version would allow to test
the atmospheric neutrino problem, the second at least part of the solar
neutrino problem. Both versions would allow in addition significant
contributions to testing several classes of GUT models. These are especially
tests of R-parity breaking supersymmetry models, leptoquark masses and
mechanism and right-handed W-boson masses comparable to LHC. The second issue
of the experiment is the search for dark matter in the universe. The entire
MSSM parameter space for prediction of neutralinos as dark matter particles
could be covered already in a first step of the full experiment - with the same
purity requirements but using only 100 kg of 76Ge or even of natural Ge -
making the experiment competitive to LHC in the search for supersymmetry.
The layout of the proposed experiment is discussed and the shielding and
purity requirements are studied using GEANT Monte Carlo simulations. As a
demonstration of the feasibility of the experiment first results of operating a
'naked' Ge detector in liquid nitrogen are presented.Comment: 22 pages, 12 figures, see also
http://pluto.mpi-hd.mpg.de/~betalit/genius.htm
FIC/FEM formulation with matrix stabilizing terms for incompressible flows at low and high Reynolds numbers
The final publication is available at Springer via http://dx.doi.org/10.1007/s00466-006-0060-yWe present a general formulation for incompressible fluid flow analysis using the finite element method. The necessary stabilization for dealing with convective effects and the incompressibility condition are introduced via the Finite Calculus method using a matrix form of the stabilization parameters. This allows to model a wide range of fluid flow problems for low and high Reynolds numbers flows without introducing a turbulence model. Examples of application to the analysis of incompressible flows with moderate and large Reynolds numbers are presented.Peer ReviewedPostprint (author's final draft
An alternative approach to measuring treatment persistence with antipsychotic agents among patients with schizophrenia in the Veterans Health Administration
Prior studies have demonstrated the importance of treatment persistence with anti-psychotic agents in sustaining control of schizophrenic symptoms. However, the conventional approach in measuring treatment persistence tended to use only the first prescription episode even though some patients received multiple prescriptions (or multiple treatment episodes) of the same medication within one year following the initiation of the index drug. In this study, we used data from the Veterans Health Administration in the United States to assess the extent to which patients received multiple prescriptions. The study found that about a quarter of the patients had two or more treatment episodes and that levels of treatment persistence tended to vary across treatment episodes. Based on these results, we offered an alternative approach in which we calculated treatment persistence with typical and atypical antipsychotic agents separately for patients with one, two, or three treatment episodes. Considering that patients with different number of treatment episodes might differ in disease profiles, this treatment episode-specific approach offered a fair comparison of the levels of treatment persistence across patients with different number of treatment episodes. Future research needs to extend the analyses beyond two antipsychotic classes to individual antipsychotic agents. A more comprehensive assessment using appropriate analytic methods should help physicians make prescription choices that will ultimately improve the care of patients with schizophrenia
The role of temperature and frequency on fretting wear of a like-on-like stainless steel contact
The influences of environmental temperature and fretting frequency on the mechanisms and rates of wear in a like-on-like 304 stainless steel contact were examined, and mainly attributed to changes in the mechanical response of the bulk material and to changes in the behaviour of the oxide debris formed in the fretting process. At low temperatures, wear proceeds by continual oxide formation and egress from the contact, whilst at high temperatures, the rate of wear is much reduced, associated with the development of oxide formed into a protective bed within the contact. The temperature at which the change between these two behaviours took place was dependent upon the fretting frequency, with evidence that, at this transition temperature, changes in behaviour can occur as the fretting test proceeds under a fixed set of conditions. An interaction diagram has been developed which provides a coherent framework by which the complex effects of these two parameters can be rationalised in terms of widely accepted physical principles
R-parity violation in SU(5)
We show that judiciously chosen R-parity violating terms in the minimal
renormalizable supersymmetric SU(5) are able to correct all the
phenomenologically wrong mass relations between down quarks and charged
leptons. The model can accommodate neutrino masses as well. One of the most
striking consequences is a large mixing between the electron and the Higgsino.
We show that this can still be in accord with data in some regions of the
parameter space and possibly falsified in future experiments.Comment: 30 pages, 1 figure. Revised version. To appear in JHE
- …