808 research outputs found

    De spiegel van Straatsburg

    Get PDF
    Criminal Justice: Legitimacy, accountability, and effectivit

    Simulating `Complex' Problems with Quantum Monte Carlo

    Full text link
    We present a new quantum Monte Carlo algorithm suitable for generically complex problems, such as systems coupled to external magnetic fields or anyons in two spatial dimensions. We find that the choice of gauge plays a nontrivial role, and can be used to reduce statistical noise in the simulation. Furthermore, it is found that noise can be greatly reduced by approximate cancellations between the phases of the (gauge dependent) statistical flux and the external magnetic flux.Comment: Revtex, 11 pages. 3 postscript files for figures attache

    Small Fermi energy and phonon anharmonicity in MgB_2 and related compounds

    Full text link
    The remarkable anharmonicity of the E_{2g} phonon in MgB_2 has been suggested in literature to play a primary role in its superconducting pairing. We investigate, by means of LDA calculations, the microscopic origin of such an anharmonicity in MgB_2, AlB_2, and in hole-doped graphite. We find that the anharmonic character of the E_{2g} phonon is essentially driven by the small Fermi energy of the sigma holes. We present a simple analytic model which allows us to understand in microscopic terms the role of the small Fermi energy and of the electronic structure. The relation between anharmonicity and nonadiabaticity is pointed out and discussed in relation to various materials.Comment: 5 pages, 2 figures replaced with final version, accepted on Physical Review

    Competition between spin and charge polarized states in nanographene ribbons with zigzag edges

    Full text link
    Effects of the nearest neighbor Coulomb interaction on nanographene ribbons with zigzag edges are investigated using the extended Hubbard model within the unrestricted Hartree-Fock approximation. The nearest Coulomb interaction stabilizes a novel electronic state with the opposite electric charges separated and localized along both edges, resulting in a finite electric dipole moment pointing from one edge to the other. This charge-polarized state competes with the peculiar spin-polarized state caused by the on-site Coulomb interaction and is stabilized by an external electric field.Comment: 4 pages; 4 figures; accepted for publication in Phys. Rev. B; related Web site: http://staff.aist.go.jp/k.harigaya/index_E.htm

    Triplet superconductivity in quasi one-dimensional systems

    Full text link
    We study a Hubbard hamiltonian, including a quite general nearest-neighbor interaction, parametrized by repulsion V, exchange interactions Jz, Jperp, bond-charge interaction X and hopping of pairs W. The case of correlated hopping, in which the hopping between nearest neighbors depends upon the occupation of the two sites involved, is also described by the model for sufficiently weak interactions. We study the model in one dimension with usual continuum-limit field theory techniques, and determine the phase diagram. For arbitrary filling, we find a very simple necessary condition for the existence of dominant triplet superconducting correlations at large distance in the spin SU(2) symmetric case: 4V+J<0. In the correlated hopping model, the three-body interaction should be negative for positive V. We also compare the predictions of this weak-coupling treatment with numerical exact results for the correlated-hopping model obtained by diagonalizing small chains, and using novel techniques to determine the opening of the spin gap.Comment: 8 pages, 3 figure

    Bosonic representation of one-dimensional Heisenberg ferrimagnets

    Get PDF
    The energy structure and the thermodynamics of ferrimagnetic Heisenberg chains of alternating spins S and s are described in terms of the Schwinger bosons and modified spin waves. In the Schwinger representation, we average the local constraints on the bosons and diagonalize the Hamiltonian at the Hartree-Fock level. In the Holstein-Primakoff representation, we optimize the free energy in two different ways introducing an additional constraint on the staggered magnetization. A new modified spin-wave scheme, which employs a Lagrange multiplier keeping the native energy structure free from temperature and thus differs from the original Takahashi Scheme, is particularly stressed as an excellent language to interpret one-dimensional quantum ferrimagnetism. Other types of one-dimensional ferrimagnets and the antiferromagnetic limit S=s are also mentioned.Comment: to be published in Phys. Rev. B 69, No. 6, 0644XX (2004

    Ordering and Fluctuation of Orbital and Lattice Distortion in Perovskite Manganese Oxides

    Full text link
    Roles of orbital and lattice degrees of freedom in strongly correlated systems are investigated to understand electronic properties of perovskite Mn oxides such as La_{1-x}Sr_{x}MnO_{3}. An extended double-exchange model containing Coulomb interaction, doubly degenerate orbitals and Jahn-Teller coupling is derived under full polarization of spins with two-dimensional anisotropy. Quantum fluctuation effects of Coulomb interaction and orbital degrees of freedom are investigated by using the quantum Monte Carlo method. In undoped states, it is crucial to consider both the Coulomb interaction and the Jahn-Teller coupling in reproducing characteristic hierarchy of energy scales among charge, orbital-lattice and spin degrees of freedom in experiments. Our numerical results quantitatively reproduce the charge gap amplitude as well as the stabilization energy and the amplitude of the cooperative Jahn-Teller distortion in undoped compounds. Upon doping of carriers, in the absence of the Jahn-Teller distortion, critical enhancement of both charge compressibility and orbital correlation length is found with decreasing doping concentration. These are discussed as origins of strong incoherence in charge dynamics. With the Jahn-Teller coupling in the doped region, collapse of the Jahn-Teller distortion and instability to phase separation are obtained and favorably compared with experiments. These provide a possible way to understand the complicated properties of lightly doped manganites.Comment: 22 pages RevTeX including 25 PS figures, submitted to Phys.Rev.B, replaced version; two figures are replaced by Fig.17 with minor changes in the tex

    The (muon^-,muon^+) conversion in nuclei as a probe of new physics

    Full text link
    A detailed study of the muonic analogue of neutrinoless double beta decay, (muon^-,muon^+) conversion, has been carried out for the A=44 nuclear system. We studied several lepton number violating (LNV) mechanisms potentially triggering this process: exchange by light and heavy Majorana neutrinos as well as exchange by supersymmetric particles participating in R-parity violating interactions. The nuclear structure has been taken into account within the renormalized Quasiparticle Random Phase Approximation method. To our knowledge, this is the first realistic treatment of nuclear structure aspects of the (muon^-,muon^+) conversion. We estimated the rate of this process utilizing the existing experimental constraints on the parameters of the underlying LNV interactions and conclude that the (muon^-,muon^+) conversion is hardly detectable in the near future experiments.Comment: 23 pages, RevTex, 3 Postscript figure

    Inhibition of experimental autoimmune uveitis by intravitreal AAV-Equine-IL10 gene therapy

    Get PDF
    Equine recurrent uveitis (ERU) is a spontaneous, painful, and vision threatening disease affecting up to 25% of equine populations worldwide. Current treatments of ERU are nonspecific and have many side effects which limits them to short-term use. In order to develop an effective therapy for ERU, we investigated the use of adeno-associated virus (AAV) gene therapy, exploiting a natural immune tolerance mechanism induced by equine interleukin-10 (Equine-IL10). The purpose of this study was to evaluate the therapeutic efficacy of a single intravitreal (IVT) dose of AAV8-Equine-IL10 gene therapy for inhibition of experimental autoimmune uveitis (EAU) in rats. Each rat was dosed intravitreally (IVT) in both eyes with either balanced salt solution (BSS) (control; n = 4), AAV8-Equine-IL10 at a low dose (2.4x109 vg; n = 5) or high dose (2.4x1010 vg; n = 5). EAU was induced in all groups of rats 7 days after IVT injections and euthanized 21 days post-injection. Ophthalmic examination and aqueous humor (AH) cell counts were recorded with the observer blinded to the treatment groups. Histopathology and qPCR were performed on selected ocular tissues. Data presented herein demonstrate that AAV8-Equine-IL10 treated rats exhibited a significant decrease in clinical inflammatory scores and AH cell counts compared to BSS-treated EAU eyes on days 10, 12 and 14 post EAU induction at both administered vector doses. Mean cellular histologic infiltrative scores were also significantly less in AAV8-Equine-IL10 dosed rats compared to the BSS group. Intravitreal injection of AAV8-Equine-IL10 resulted in Equine-IL10 cDNA expression in the ciliary body, retina, cornea, and optic nerve in a dose-dependent manner. A single IVT injection of AAV8-Equine-IL10 appeared to be well-tolerated and inhibited EAU even at the lowest administered dose. These results demonstrate safety and efficacy of AAV8-Equine-IL10 to prevent EAU and support continued exploration of AAV gene therapy for the treatment of equine and perhaps human recurrent uveitis
    corecore