216 research outputs found

    Impact of Land Surface Initialization Approach on Subseasonal Forecast Skill: a Regional Analysis in the Southern Hemisphere

    Get PDF
    The authors use a sophisticated coupled land-atmosphere modeling system for a Southern Hemisphere subdomain centered over southeastern Australia to evaluate differences in simulation skill from two different land surface initialization approaches. The first approach uses equilibrated land surface states obtained from offline simulations of the land surface model, and the second uses land surface states obtained from reanalyses. The authors find that land surface initialization using prior offline simulations contribute to relative gains in subseasonal forecast skill. In particular, relative gains in forecast skill for temperature of 10%-20% within the first 30 days of the forecast can be attributed to the land surface initialization method using offline states. For precipitation there is no distinct preference for the land surface initialization method, with limited gains in forecast skill irrespective of the lead time. The authors evaluated the asymmetry between maximum and minimum temperatures and found that maximum temperatures had the largest gains in relative forecast skill, exceeding 20% in some regions. These results were statistically significant at the 98% confidence level at up to 60 days into the forecast period. For minimum temperature, using reanalyses to initialize the land surface contributed to relative gains in forecast skill, reaching 40% in parts of the domain that were statistically significant at the 98% confidence level. The contrasting impact of the land surface initialization method between maximum and minimum temperature was associated with different soil moisture coupling mechanisms. Therefore, land surface initialization from prior offline simulations does improve predictability for temperature, particularly maximum temperature, but with less obvious improvements for precipitation and minimum temperature over southeastern Australia

    Mucosa-associated invariant T cells are systemically depleted in simian immunodeficiency virus-infected rhesus macaques

    Get PDF
    Mucosa-associated invariant T (MAIT) cells contribute to host immune protection against a wide range of potential pathogens via the recognition of bacterial metabolites presented by the major histocompatibility complex class I-related molecule MR1. Although bacterial products translocate systemically in human immunodeficiency virus (HIV)-infected individuals and simian immunodeficiency virus (SIV)-infected Asian macaques, several studies have shown that MAIT cell frequencies actually decrease in peripheral blood during the course of HIV/SIV disease. However, the mechanisms underlying this proportional decline remain unclear. In this study, we characterized the phenotype, activation status, functionality, distribution, and clonotypic structure of MAIT cell populations in the peripheral blood, liver, mesenteric lymph nodes (MLNs), jejunum, and bronchoalveolar lavage (BAL) fluid of healthy and SIV-infected rhesus macaques (RMs). Low frequencies of MAIT cells were observed in the peripheral blood, MLNs, and BAL fluid of SIV-infected RMs. These numerical changes were coupled with increased proliferation and a highly public T cell receptor alpha (TCRα) repertoire in the MAIT cell compartment without redistribution to other anatomical sites. Collectively, our data show systemically decreased frequencies of MAIT cells likely attributable to enhanced turnover in SIV-infected RMs. This process may impair protective immunit

    Association of Progressive CD4+ T Cell Decline in SIV Infection with the Induction of Autoreactive Antibodies

    Get PDF
    The progressive decline of CD4+ T cells is a hallmark of disease progression in human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infection. Whereas the acute phase of the infection is dominated by virus-mediated depletion of memory CD4+ T cells, chronic infection is often associated with a progressive decline of total CD4+ T cells, including the naïve subset. The mechanism of this second phase of CD4+ T cell loss is unclear and may include immune activation–induced cell death, immune-mediated destruction, and regenerative or homeostatic failure. We studied patterns of CD4+ T cell subset depletion in blood and tissues in a group of 20 rhesus macaques inoculated with derivatives of the pathogenic SIVsmE543-3 or SIVmac239. Phenotypic analysis of CD4+ T cells demonstrated two patterns of CD4+ T cell depletion, primarily affecting either naïve or memory CD4+ T cells. Progressive decline of total CD4+ T cells was observed only in macaques with naïve CD4+ T cell depletion (ND), though the depletion of memory CD4+ T cells was profound in macaques with memory CD4+ T cell depletion (MD). ND macaques exhibited lower viral load and higher SIV-specific antibody responses and greater B cell activation than MD macaques. Depletion of naïve CD4+ T cells was associated with plasma antibodies autoreactive with CD4+ T cells, increasing numbers of IgG-coated CD4+ T cells, and increased incidence of autoreactive antibodies to platelets (GPIIIa), dsDNA, and phospholipid (aPL). Consistent with a biological role of these antibodies, these latter antibodies were accompanied by clinical features associated with autoimmune disorders, thrombocytopenia, and catastrophic thrombotic events. More importantly for AIDS pathogenesis, the level of autoreactive antibodies significantly correlated with the extent of naïve CD4+ T cell depletion. These results suggest an important role of autoreactive antibodies in the CD4+ T cell decline observed during progression to AIDS

    The Inhibition of Phosphoinositide-3 Kinases Induce Resolution of Inflammation in a Gout Model

    Get PDF
    Phosphoinositide-3 kinases (PI3Ks) are central signaling enzymes that are involved in many aspects of immune cell function. PI3Kγ and PI3Kδ are the major isoforms expressed in leukocytes. The role of PI3K isoforms in the resolution of inflammation is still poorly understood. Here, we investigated the contribution of PI3Kγ and PI3Kδ to the resolution of inflammation in a model of gout in mice.Methods and Results: Experiments were performed in wild-type male C57/Bl6 mice. Selective inhibitors of PI3K-γ (AS605240) or PI3Kδ (GSK045) were injected in the joint 12 h after injection of MSU crystals, hence at the peak of inflammation. Inhibition of either PI3K isoform decreased number of neutrophils that migrated in response to the injection of MSU crystals. This was associated with reduction of myeloperoxidase activity and IL-1β levels in periarticular tissues and reduction of histological score. Joint dysfunction, as seen by reduced mechanical hypernociception, was improved by treatment with either inhibitor. The decrease in neutrophil numbers was associated with enhanced apoptosis and efferocytosis of these cells. There was shortening of resolution intervals, suggesting inhibition of either isoform induced the resolution of neutrophilic inflammation. Blockade of PI3Kγ or PI3Kδ reduced Nuclear Factor kappa B (NF-κB) activation. A pan-PI3K inhibitor (CL27c) reduced inflammation induced by MSU crystals by a magnitude that was similar to that attained by the PI3Kγ or PI3Kδ selective inhibitors alone.Conclusion: Taken together, these results suggest that neutrophils can use PI3Kγ or PI3Kδ to remain in the cavity and blockade of either isoenzyme is sufficient to induce their apoptosis and resolve inflammation in a murine model of gout

    Phylogenetic Associations of Human and Simian T-Cell Leukemia/Lymphotropic Virus Type I Strains: Evidence for Interspecies Transmission

    Get PDF
    Homologous env sequences from 17 human T-leukemia/lymphotropic virus type I (HTLV-I) strains from throughout the world and from 25 simian T-leukemia/lymphotropic virus type I (STLV-I) strains from 12 simian species in Asia and Africa were analyzed in a phylogenetic context as an approach to resolving the natural history of these related retroviruses. STLV-I exhibited greater overall sequence variation between strains (1 to 18% compared with 0 to 9% for HTLV-I), supporting the simian origin of the modern viruses in all species. Three HTLV-I phylogenetic clusters or clades (cosmopolitan, Zaire, and Melanesia) were resolved with phenetic, parsimony, and likelihood analytical procedures. Seven phylogenetic clusters of STLV-I were resolved with the most primitive (deeply rooted) divergence involving several STLV-I strains from Asian primate species. Combined analysis of HTLV-I and STLV-I revealed that neither STLV-I clusters nor HTLV-I clusters recapitulated host species specificity; rather, multiple clades from the same species were closer to clades from other species than to each other. We interpret these evolutionary associations as support for the occurrence of multiple discrete interspecies transmissions of ancestral viruses between primate species (including human) that led to recognizable phylogenetic clades that persist in modern species. Geographic concordance of divergent host species that harbor closely related viruses reinforces that physical feasibility for hypothesized interspecies virus transmission in the past and in the present

    SIV-specific CD8+ T cells are clonotypically distinct across lymphoid and mucosal tissues

    Get PDF
    CD8+ T cell responses are necessary for immune control of simian immunodeficiency virus (SIV). However, the key parameters that dictate antiviral potency remain elusive, conceivably because most studies to date have been restricted to analyses of circulating CD8+ T cells. We conducted a detailed clonotypic, functional, and phenotypic survey of SIV-specific CD8+ T cells across multiple anatomical sites in chronically infected rhesus macaques with high (>10,000 copies/mL plasma) or low burdens of viral RNA (<10,000 copies/mL plasma). No significant differences in response magnitude were identified across anatomical compartments. Rhesus macaques with low viral loads (VLs) harbored higher frequencies of polyfunctional CXCR5+ SIV-specific CD8+ T cells in various lymphoid tissues and higher proportions of unique Gag-specific CD8+ T cell clonotypes in the mesenteric lymph nodes relative to rhesus macaques with high VLs. In addition, public Gag-specific CD8+ T cell clonotypes were more commonly shared across distinct anatomical sites than the corresponding private clonotypes, which tended to form tissue-specific repertoires, especially in the peripheral blood and the gastrointestinal tract. Collectively, these data suggest that functionality and tissue localization are important determinants of CD8+ T cell–mediated efficacy against SIV

    Daily and Nondaily Oral Preexposure Prophylaxis in Men and Transgender Women Who Have Sex With Men: The Human Immunodeficiency Virus Prevention Trials Network 067/ADAPT Study

    Get PDF
    Background: Nondaily dosing of oral preexposure prophylaxis (PrEP) may provide equivalent coverage of sex events compared with daily dosing. Methods: At-risk men and transgender women who have sex with men were randomly assigned to 1 of 3 dosing regimens: 1 tablet daily, 1 tablet twice weekly with a postsex dose (time-driven), or 1 tablet before and after sex (event-driven), and were followed for coverage of sex events with pre- and postsex dosing measured by weekly self-report, drug concentrations, and electronic drug monitoring. Results: From July 2012 to May 2014, 357 participants were randomized. In Bangkok, the coverage of sex events was 85% for the daily arm compared with 84% for the time-driven arm (P = .79) and 74% for the event-driven arm (P = .02). In Harlem, coverage was 66%, 47% (P = .01), and 52% (P = .01) for these groups. In Bangkok, PrEP medication concentrations in blood were consistent with use of ≥2 tablets per week in >95% of visits when sex was reported in the prior week, while in Harlem, such medication concentrations occurred in 48.5% in the daily arm, 30.9% in the time-driven arm, and 16.7% in the event-driven arm (P < .0001). Creatinine elevations were more common in the daily arm (P = .050), although they were not dose limiting. Conclusions: Daily dosing recommendations increased coverage and protective drug concentrations in the Harlem cohort, while daily and nondaily regimens led to comparably favorable outcomes in Bangkok, where participants had higher levels of education and employment

    Inhibition of Adaptive Immune Responses Leads to a Fatal Clinical Outcome in SIV-Infected Pigtailed Macaques but Not Vervet African Green Monkeys

    Get PDF
    African green monkeys (AGM) and other natural hosts for simian immunodeficiency virus (SIV) do not develop an AIDS-like disease following SIV infection. To evaluate differences in the role of SIV-specific adaptive immune responses between natural and nonnatural hosts, we used SIVagmVer90 to infect vervet AGM and pigtailed macaques (PTM). This infection results in robust viral replication in both vervet AGM and pigtailed macaques (PTM) but only induces AIDS in the latter species. We delayed the development of adaptive immune responses through combined administration of anti-CD8 and anti-CD20 lymphocyte-depleting antibodies during primary infection of PTM (n = 4) and AGM (n = 4), and compared these animals to historical controls infected with the same virus. Lymphocyte depletion resulted in a 1-log increase in primary viremia and a 4-log increase in post-acute viremia in PTM. Three of the four PTM had to be euthanized within 6 weeks of inoculation due to massive CMV reactivation and disease. In contrast, all four lymphocyte-depleted AGM remained healthy. The lymphocyte-depleted AGM showed only a trend toward a prolongation in peak viremia but the groups were indistinguishable during chronic infection. These data show that adaptive immune responses are critical for controlling disease progression in pathogenic SIV infection in PTM. However, the maintenance of a disease-free course of SIV infection in AGM likely depends on a number of mechanisms including non-adaptive immune mechanisms
    • …
    corecore