335 research outputs found

    Reviewing and renewing the use of beneficial root and soil bacteria for plant growth and sustainability in nutrient-poor, arid soils

    Get PDF
    A rapidly increasing human population coupled with climate change and several decades of over-reliance on synthetic fertilizers has led to two pressing global challenges: food insecurity and land degradation. Therefore, it is crucial that practices enabling both soil and plant health as well as sustainability be even more actively pursued. Sustainability and soil fertility encompass practices such as improving plant productivity in poor and arid soils, maintaining soil health, and minimizing harmful impacts on ecosystems brought about by poor soil management, including run-off of agricultural chemicals and other contaminants into waterways. Plant growth promoting bacteria (PGPB) can improve food production in numerous ways: by facilitating resource acquisition of macro- and micronutrients (especially N and P), modulating phytohormone levels, antagonizing pathogenic agents and maintaining soil fertility. The PGPB comprise different functional and taxonomic groups of bacteria belonging to multiple phyla, including Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria, among others. This review summarizes many of the mechanisms and methods these beneficial soil bacteria use to promote plant health and asks whether they can be further developed into effective, potentially commercially available plant stimulants that substantially reduce or replace various harmful practices involved in food production and ecosystem stability. Our goal is to describe the various mechanisms involved in beneficial plant-microbe interactions and how they can help us attain sustainability

    Characterization of Arabidopsis AtUGT85A and AtGUS gene families and their expression in rapidly dividing tissues

    Get PDF
    AbstractIn humans, uridine 5′-diphosphate glucuronosyltransferase (UGT) operates in opposition to glucuronidase (GUS) to control activity of diverse metabolites such as hormones by reversible conjugation with glucuronic acid. Previous data revealed that, as in mammals, these enzymes are required for plant life in that a UGT from Pisum sativum (PsUGT1) controls plant development by opposing endogenous GUS activity thereby modulating the duration of the cell cycle. Here we report that a small family of genes (AtUGT85A1, 2, 3, 4, 5, and 7) homologous to pea PsUGT1 exists in the Arabidopsis genome. The AtUGT85A-encoded proteins are predicted to be membrane-associated enzymes. Three genes (AtGUS1, AtGUS2, and AtGUS3) that are homologous to a GUS-encoding gene from Scutellaria baicalensis were identified. The AtGUS-encoded proteins are predicted to be secretory (AtGUS1) and membrane-associated (AtGUS2 and AtGUS3) enzymes. Both AtUGT85A and AtGUS genes, like PsUGT1, exhibit localized, tissue-specific expression, mainly in areas of active cell division with possible involvement in cell cycle regulation

    Effects of nutritional and environmental conditions on Sinorhizobium meliloti biofilm formation

    Get PDF
    Rhizobia are non-spore-forming soil bacteria that fix atmospheric nitrogen into ammonia in a symbiosis with legume roots. However, in the absence of a legume host, rhizobia manage to survive and hence must have evolved strategies to adapt to diverse environmental conditions. The capacity to respond to variations in nutrient availability enables the persistence of rhizobial species in soil, and consequently improves their ability to colonize and to survive in the host plant. Rhizobia, like many other soil bacteria, persist in nature most likely in sessile communities known as biofilms, which are most often composed of multiple microbial species. We have been employing in vitro assays to study environmental parameters that might influence biofilm formation in the Medicago symbiont Sinorhizobium meliloti. These parameters include carbon source, amount of nitrate, phosphate, calcium and magnesium as well as the effects of osmolarity and pH. The microtiter plate assay facilitates the detection of subtle differences in rhizobial biofilms in response to these parameters, thereby providing insight into how environmental stress or nutritional status influences rhizobial survival. Nutrients such as sucrose, phosphate and calcium enhance biofilm formation as their concentrations increase, whereas extreme temperatures and pH negatively affect biofilm formation.Fil: Rinaudi, Luciana Veronica. Universidad Nacional de Río Cuarto; ArgentinaFil: Fujishige, Nancy A.. University of California; Estados UnidosFil: Hirsch, Ann M.. University of California; Estados UnidosFil: Banchio, Erika. Universidad Nacional de Río Cuarto; ArgentinaFil: Zorreguieta, Ángeles. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Giordano, Walter Fabian. Universidad Nacional de Río Cuarto; Argentin

    Antifungal Activity of Bacillus Species Against Fusarium and Analysis of the Potential Mechanisms Used in Biocontrol

    Get PDF
    Fusarium is a complex genus of ascomycete fungi that consists of plant pathogens of agricultural relevance. Controlling Fusarium infection in crops that leads to substantial yield losses is challenging. These economic losses along with environmental and human health concerns over the usage of chemicals in attaining disease control are shifting focus toward the use of biocontrol agents for effective control of phytopathogenic Fusarium spp. In the present study, an analysis of the plant-growth promoting (PGP) and biocontrol attributes of four bacilli (Bacillus simplex 30N-5, B. simplex 11, B. simplex 237, and B. subtilis 30VD-1) has been conducted. The production of cellulase, xylanase, pectinase, and chitinase in functional assays was studied, followed by in silico gene analysis of the PGP-related and biocontrol-associated genes. Of all the bacilli included in this study, B. subtilis 30VD-1 (30VD-1) demonstrated the most effective antagonism against Fusarium spp. under in vitro conditions. Additionally, 100 μg/ml of the crude 1-butanol extract of 30VD-1’s cell-free culture filtrate caused about 40% inhibition in radial growth of Fusarium spp. Pea seed bacterization with 30VD-1 led to considerable reduction in wilt severity in plants with about 35% increase in dry plant biomass over uninoculated plants growing in Fusarium-infested soil. Phase contrast microscopy demonstrated distortions and abnormal swellings in F. oxysporum hyphae on co-culturing with 30VD-1. The results suggest a multivariate mode of antagonism of 30VD-1 against phytopathogenic Fusarium spp., by producing chitinase, volatiles, and other antifungal molecules, the characterization of which is underway

    Discovery of a Transiting Adolescent Sub-Neptune Exoplanet with K2

    Get PDF
    The role of stellar age in the measured properties and occurrence rates of exoplanets is not well understood. This is in part due to a paucity of known young planets and the uncertainties in age-dating for most exoplanet host stars. Exoplanets with well-constrained ages, particularly those which are young, are useful as benchmarks for studies aiming to constrain the evolutionary timescales relevant for planets. Such timescales may concern orbital migration, gravitational contraction, or atmospheric photo-evaporation, among other mechanisms. Here we report the discovery of an adolescent transiting sub-Neptune from K2 photometry of the low-mass star K2-284. From multiple age indicators we estimate the age of the star to be 120 Myr, with a 68% confidence interval of 100-760 Myr. The size of K2-284 b (RPR_P = 2.8 ±\pm 0.1 RR_\oplus) combined with its youth make it an intriguing case study for photo-evaporation models, which predict enhanced atmospheric mass loss during early evolutionary stages.Comment: Accepted to AJ, 36 pages, 17 figures, 5 table

    Plant-associated symbiotic Burkholderia species lack hallmark strategies required in mammalian pathogenesis

    Get PDF
    Burkholderia is a diverse and dynamic genus, containing pathogenic species as well as species that form complex interactions with plants. Pathogenic strains, such as B. pseudomallei and B. mallei, can cause serious disease in mammals, while other Burkholderia strains are opportunistic pathogens, infecting humans or animals with a compromised immune system. Although some of the opportunistic Burkholderia pathogens are known to promote plant growth and even fix nitrogen, the risk of infection to infants, the elderly, and people who are immunocompromised has not only resulted in a restriction on their use, but has also limited the application of non-pathogenic, symbiotic species, several of which nodulate legume roots or have positive effects on plant growth. However, recent phylogenetic analyses have demonstrated that Burkholderia species separate into distinct lineages, suggesting the possibility for safe use of certain symbiotic species in agricultural contexts. A number of environmental strains that promote plant growth or degrade xenobiotics are also included in the symbiotic lineage. Many of these species have the potential to enhance agriculture in areas where fertilizers are not readily available and may serve in the future as inocula for crops growing in soils impacted by climate change. Here we address the pathogenic potential of several of the symbiotic Burkholderia strains using bioinformatics and functional tests. A series of infection experiments using Caenorhabditis elegans and HeLa cells, as well as genomic characterization of pathogenic loci, show that the risk of opportunistic infection by symbiotic strains such as B. tuberum is extremely low

    Transforming the Healthcare Response to Intimate Partner Violence and Taking Best Practices to Scale

    Get PDF
    BACKGROUND: Intimate partner violence (IPV) is prevalent among adolescent and adult women, with significant physical, sexual, and mental health consequences. In 2011, the Institute of Medicine\u27s Clinical Preventive Services for Women consensus report recommended universal screening for violence as a component of women\u27s preventive services; this policy has been adopted by the Health Resources and Services Administration (HRSA). These policy developments require that effective clinic-based interventions be identified, easily implemented, and taken to scale. METHODS: To foster dialogue about implementing effective interventions, we convened a symposium entitled Responding to Violence Against Women: Emerging Evidence, Implementation Science, and Innovative Interventions, on May 21, 2012. Drawing on multidisciplinary expertise, the agenda integrated data on the prevalence and health impact of IPV violence, with an overview of the implementation science framework, and a panel of innovative IPV screening interventions. Recommendations were generated for developing, testing, and implementing clinic-based interventions to reduce violence and mitigate its health impact. RESULTS: The strength of evidence supporting specific IPV screening interventions has improved, but the optimal implementation and dissemination strategies are not clear. Implementation science, which seeks to close the evidence to program gap, is a useful framework for improving screening and intervention uptake and ensuring the translation of research findings into routine practice. CONCLUSIONS: Findings have substantial relevance to the broader research, clinical, and practitioner community. Our conference proceedings fill a timely gap in knowledge by informing practitioners as they strive to implement universal IPV screening and guiding researchers as they evaluate the success of implementing IPV interventions to improve women\u27s health and well-being
    corecore