431 research outputs found
Belief Semantics of Authorization Logic
Authorization logics have been used in the theory of computer security to
reason about access control decisions. In this work, a formal belief semantics
for authorization logics is given. The belief semantics is proved to subsume a
standard Kripke semantics. The belief semantics yields a direct representation
of principals' beliefs, without resorting to the technical machinery used in
Kripke semantics. A proof system is given for the logic; that system is proved
sound with respect to the belief and Kripke semantics. The soundness proof for
the belief semantics, and for a variant of the Kripke semantics, is mechanized
in Coq
Nexus Authorization Logic (NAL): Logical Results
Nexus Authorization Logic (NAL) [Schneider et al. 2011] is a logic for
reasoning about authorization in distributed systems. A revised version of NAL
is given here, including revised syntax, a revised proof theory using localized
hypotheses, and a new Kripke semantics. The proof theory is proved sound with
respect to the semantics, and that proof is formalized in Coq
Semantics for Noninterference with Interaction Trees
Noninterference is the strong information-security property that a program does not leak secrets through publicly-visible behavior. In the presence of effects such as nontermination, state, and exceptions, reasoning about noninterference quickly becomes subtle. We advocate using interaction trees (ITrees) to provide compositional mechanized proofs of noninterference for multi-language, effectful, nonterminating programs, while retaining executability of the semantics. We develop important foundations for security analysis with ITrees: two indistinguishability relations, leading to two standard notions of noninterference with adversaries of different strength, along with metatheory libraries for reasoning about each. We demonstrate the utility of our results using a simple imperative language with embedded assembly, along with a compiler into that assembly language
Semantics for Noninterference with Interaction Trees (Artifact)
Noninterference is the strong information-security property that a program does not leak secrets through publicly-visible behavior. In the presence of effects such as nontermination, state, and exceptions, reasoning about noninterference quickly becomes subtle. We advocate using interaction trees (ITrees) to provide compositional mechanized proofs of noninterference for multi-language, effectful, nonterminating programs, while retaining executability of the semantics. We develop important foundations for security analysis with ITrees: two indistinguishability relations, leading to two standard notions of noninterference with adversaries of different strength, along with metatheory libraries for reasoning about each. We demonstrate the utility of our results using a simple imperative language with embedded assembly, along with a compiler into that assembly language
The Interrelations Between Spiritual Well-Being, Pain Interference and Depressive Symptoms in Patients with Multiple Sclerosis
Depressive symptoms are common in individuals with multiple sclerosis (MS), and are frequently exacerbated by pain; however, spiritual well-being may allow persons with MS to more effectively cope with pain-related deficits in physical and role functioning. We explored the associations between spiritual well-being, pain interference and depressive symptoms, assessing each as a potential mediator, in eighty-one patients being treated for MS, who completed self-report measures: Functional Assessment of Chronic Illness Therapy-Spiritual Well-Being Scale, Pain Effects Scale, and Center for Epidemiologic Studies Depression Scale Revised. At the bivariate level, spiritual well-being and its subscale of meaning and peace were negatively associated with depression and pain interference. In mediation models, depression was not related to pain interference via spiritual well-being, or to spiritual well-being via pain interference. Pain interference was related to depression via spiritual well-being and meaning/peace, and to spiritual well-being and meaning/peace via depressive symptoms. Finally, spiritual well-being and meaning/peace were related to depression via pain interference, and to pain interference via depressive symptoms. For patients with MS, a multi-faceted approach to treatment that includes pain reduction and promotion of spiritual well-being may be beneficial, although amelioration of depression remains a critical task
First-Order Logic for Flow-Limited Authorization
We present the Flow-Limited Authorization First-Order Logic (FLAFOL), a logic
for reasoning about authorization decisions in the presence of information-flow
policies. We formalize the FLAFOL proof system, characterize its
proof-theoretic properties, and develop its security guarantees. In particular,
FLAFOL is the first logic to provide a non-interference guarantee while
supporting all connectives of first-order logic. Furthermore, this guarantee is
the first to combine the notions of non-interference from both authorization
logic and information-flow systems. All theorems in this paper are proven in
Coq.Comment: Coq code can be found at https://github.com/FLAFOL/flafol-co
Synthesis of a fullerene-based one-dimensional nanopolymer through topochemical transformation of the parent nanowire
Large-scale practical applications of fullerene (C60) in nanodevices could be
significantly facilitated if the commercially-available micrometer-scale raw
C60 powder were further processed into a one-dimensional (1D) nanowire-related
polymer displaying covalent bonding as molecular interlinks and resembling
traditional important conjugated polymers. However, there has been little study
thus far in this area despite the abundant literature on fullerene. Here we
report the synthesis and characterization of such a C60-based nanowire polymer,
(-C60TMB-)n, where TMB=1,2,4-trimethylbenzene, which displays a well-defined
crystalline structure, exceptionally large length-to-width ratio and excellent
thermal stability. The material is prepared by first growing the corresponding
nanowire through a solution phase of C60 followed by a topochemical
polymerization reaction in the solid state. Gas chromatography, mass
spectrometry and 13C nuclear magnetic resonance evidence is provided for the
nature of the covalent bonding mode adopted by the polymeric chains.
Theoretical analysis based on detailed calculations of the reaction energetics
and structural analysis provides an in-depth understanding of the
polymerization pathway. The nanopolymer promises important applications in
biological fields and in the development of optical, electrical, and magnetic
nanodevices.Comment: 30 pages, 12 figures, 2 table
The Epstein-Barr Virus G-Protein-Coupled Receptor Contributes to Immune Evasion by Targeting MHC Class I Molecules for Degradation
Epstein-Barr virus (EBV) is a human herpesvirus that persists as a largely subclinical infection in the vast majority of adults worldwide. Recent evidence indicates that an important component of the persistence strategy involves active interference with the MHC class I antigen processing pathway during the lytic replication cycle. We have now identified a novel role for the lytic cycle gene, BILF1, which encodes a glycoprotein with the properties of a constitutive signaling G-protein-coupled receptor (GPCR). BILF1 reduced the levels of MHC class I at the cell surface and inhibited CD8+ T cell recognition of
endogenous target antigens. The underlying mechanism involves physical association of BILF1 with MHC class I molecules, an increased turnover from the cell surface, and enhanced degradation via lysosomal proteases. The BILF1 protein of the closely related CeHV15 c1-herpesvirus of the Rhesus Old World primate (80% amino acid sequence identity) downregulated surface MHC class I similarly to EBV BILF1. Amongst the human herpesviruses, the GPCR encoded by the ORF74 of the KSHV c2-herpesvirus is most closely related to EBV BILF1 (15% amino acid sequence identity) but did not affect levels of surface MHC class I. An engineered mutant of BILF1 that was unable to activate G protein signaling pathways retained the ability to downregulate MHC class I, indicating that the immune-modulating and GPCR-signaling properties are two distinct functions of BILF1. These findings extend our understanding of the normal biology of an important human pathogen. The discovery of a third EBV lytic cycle gene that cooperates to interfere with MHC class I antigen processing underscores the importance of the need for EBV to be able to evade CD8+ T cell responses during the lytic replication cycle, at a time when such a large number of potential viral targets are expressed
- …