42 research outputs found

    Spatially resolved metabolic distribution for unraveling the physiological change and responses in tomato fruit using matrix-assisted laser desorption/ionization–mass spectrometry imaging (MALDI–MSI)

    Get PDF
    Information on spatiotemporal metabolic behavior is indispensable for a precise understanding of physiological changes and responses, including those of ripening processes and wounding stress, in fruit, but such information is still limited. Here, we visualized the spatial distribution of metabolites within tissue sections of tomato (Solanum lycopersicum L.) fruit using a matrix-assisted laser desorption/ionization–mass spectrometry imaging (MALDI–MSI) technique combined with a matrix sublimation/recrystallization method. This technique elucidated the unique distribution patterns of more than 30 metabolite-derived ions, including primary and secondary metabolites, simultaneously. To investigate spatiotemporal metabolic alterations during physiological changes at the whole-tissue level, MALDI–MSI was performed using the different ripening phenotypes of mature green and mature red tomato fruits. Although apparent alterations in the localization and intensity of many detected metabolites were not observed between the two tomatoes, the amounts of glutamate and adenosine monophosphate, umami compounds, increased in both mesocarp and locule regions during the ripening process. In contrast, malate, a sour compound, decreased in both regions. MALDI–MSI was also applied to evaluate more local metabolic responses to wounding stress. Accumulations of a glycoalkaloid, tomatine, and a low level of its glycosylated metabolite, esculeoside A, were found in the wound region where cell death had been induced. Their inverse levels were observed in non-wounded regions. Furthermore, the amounts of both compounds differed in the developmental stages. Thus, our MALDI–MSI technique increased the understanding of the physiological changes and responses of tomato fruit through the determination of spatiotemporally resolved metabolic alterations

    A Chemometrics-driven Strategy for the Bioactivity Evaluation of Complex Multicomponent Systems and the Effective Selection of Bioactivity-predictive Chemical Combinations

    Get PDF
    Although understanding their chemical composition is vital for accurately predicting the bioactivity of multicomponent drugs, nutraceuticals, and foods, no analytical approach exists to easily predict the bioactivity of multicomponent systems from complex behaviors of multiple coexisting factors. We herein represent a metabolic profiling (MP) strategy for evaluating bioactivity in systems containing various small molecules. Composition profiles of diverse bioactive herbal samples from 21 green tea extract (GTE) panels were obtained by a high-throughput, non-targeted analytical procedure. This employed the matrix-assisted laser desorption ionization-mass spectrometry (MALDI-MS) technique, using 1,5-diaminonaphthalene (1,5-DAN) as the optical matrix for detecting GTE-derived components. Multivariate statistical analyses revealed differences among the GTEs in their antioxidant activity, oxygen radical absorbance capacity (ORAC). A reliable bioactivity-prediction model was constructed to predict the ORAC of diverse GTEs from their compositional balance. This chemometric procedure allowed the evaluation of GTE bioactivity by multicomponent rather than single-component information. The bioactivity could be easily evaluated by calculating the summed abundance of a few selected components that contributed most to constructing the prediction model. 1,5-DAN-MALDI-MS-MP, using diverse bioactive sample panels, represents a promising strategy for screening bioactivity-predictive multicomponent factors and selecting effective bioactivity-predictive chemical combinations for crude multicomponent systems

    Cytochrome c Peroxidase from Phanerochaete chrysosporium

    No full text

    Practical study on Japanese building construction management by avoiding risk to environment and safety

    No full text
    It is essential in building construction management to prevent risk from the viewpoint of both environment and safety. This study suggests the significance of building construction management which places emphasis on risk prevention for the sake of environment and safety, with the introduction of Japanese efficient operation methods to simultaneously conduct environmental management, safety management and risk management, in addition to practical measures for heatstroke which is a serious summer issue of building construction management

    High-level heterologous expression of fungal cytochrome P450s in Escherichia coli

    Get PDF
    AbstractA thorough understanding of the sequence–structure–function relationships of cytochrome P450 (P450) is necessary to better understand the metabolic diversity of living organisms. Significant amounts of pure enzymes are sometimes required for biochemical studies, and their acquisition often relies on the possibility of their heterologous expression. In this study, we performed extensive heterologous expression of fungal P450s in Escherichia coli using 304 P450 isoforms. Using large-scale screening, we confirmed that at least 27 P450s could be expressed with/without simple sequence deletion at the 5′ end of cDNAs, which encode the N-terminal hydrophobic domain of the enzyme. Moreover, we identified N-terminal amino acid sequences that can potentially be used to construct chimeric P450s, which could dramatically improve their expression levels even when the expression of the wild-type sequence was unpromising. These findings will help increase the chance of heterologous expression of a variety of fungal and other eukaryotic membrane-bound P450s in E. coli

    Practical study on Japanese building construction management by avoiding risk to environment and safety

    No full text
    It is essential in building construction management to prevent risk from the viewpoint of both environment and safety. This study suggests the significance of building construction management which places emphasis on risk prevention for the sake of environment and safety, with the introduction of Japanese efficient operation methods to simultaneously conduct environmental management, safety management and risk management, in addition to practical measures for heatstroke which is a serious summer issue of building construction management

    SPECIFIC INTERACTION ACTING AT A CELLULOSE-BINDING DOMAIN/CELLULOSE INTERFACE FOR PAPERMAKING APPLICATION

    No full text
    Specific and strong cellulose-binding characteristics were utilized for promoting retention of additives in contaminated papermaking systems. Cellulose-binding domain (CBD) of cellulase derived from Trichoderma viride was separated by digestion with papain, and then introduced into anionic polyacrylamide (A-PAM) through a condensation reaction using water-soluble carbodiimide. The CBD-modified A-PAM (CBD-A-PAM) showed good retention on pulp fibers, resulting in high tensile strength paper sheets. The effect remained almost unchanged in the presence of model interfering substances such as ligninsulfonate and Ca2+ ions, whereas commercial cationic paper-strengthening polymer became ineffective. The cellulose-binding force of CBD was quantitatively determined by atomic force microscopy (AFM) in the liquid state. Histidine-tagged CBD protein was obtained using Escherichia coli via an expression of CBD derived from Cellulomonas fimi, and immobilized on a gold-coated AFM probe. A strong attractive force was detected only at a CBD/cellulose interface, even when Ca2+ ions were present in high concentration. Direct estimation of CBD affinity for cellulose substrate by AFM would provide significant information on the interfacial interactions useful for the functional design of papermaking additives
    corecore