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A thorough understanding of the sequence-structure-function relationships of cytochrome P450 (P450)
is necessary to better understand the metabolic diversity of living organisms. Significant amounts of pure
enzymes are sometimes required for biochemical studies, and their acquisition often relies on the possi-
bility of their heterologous expression. In this study, we performed extensive heterologous expression of
fungal P450s in Escherichia coli using 304 P450 isoforms. Using large-scale screening, we confirmed that
at least 27 P450s could be expressed with/without simple sequence deletion at the 5 end of cDNAs,
which encode the N-terminal hydrophobic domain of the enzyme. Moreover, we identified N-terminal
amino acid sequences that can potentially be used to construct chimeric P450s, which could dramatically
improve their expression levels even when the expression of the wild-type sequence was unpromising.
These findings will help increase the chance of heterologous expression of a variety of fungal and other
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eukaryotic membrane-bound P450s in E. coli.
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1. Introduction

Cytochromes P450 (P450s) constitute a large superfamily of
heme-containing monooxygenases that are distributed in a wide
variety of organisms [1-3]. The large-scale molecular variations
among the P450 in different species imply a dynamic evolutional
trajectory in which a common ancestor branched extensively into
various organisms. Thus, the vast variety of P450s has emerged
over the course of evolution. Within the last few years, a series
of genome projects have accelerated sequence compilation of
P450s. Accordingly, the large-scale divergence of fungal P450s is
currently being explored [2,4-7]. Because P450s contribute to the
metabolic diversity of fungi, it will be of great interest to explore
the biological functions of the numerous fungal P450s.

A thorough understanding of the sequence-structure—function
relationships of P450s is a challenge that can now be addressed
in the post-genomic era. For biochemical studies such as mechanis-
tic and structural investigations, significant amounts of pure en-

Abbreviations: EDTA, ethylenediaminetetraacetic acid; HEPES, 2-[4-(2-hydroxy-
ethyl)-1-piperazinyl]ethanesulfonic acid; IPTG, isopropyl-1-thio-p-p-galactopyran-
oside; P450, cytochrome P450 monooxygenase; PMSF, phenylmethylsulfonyl
fluoride; TMD, transmembrane domain.
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zymes are usually required and their availability often relies on
the possibility of their heterologous expression. Yeast and bacteria
have been used for the heterologous expression of recombinant en-
zymes including the eukaryotic membrane-bound P450s. Yeast
expression systems can readily express membrane-bound P450s
without tedious experimental procedures such as sequence modi-
fication [5,6,8]. However, the limited level of expression in yeast
cells and the cumbersome purification processes that are required
might hinder downstream applications. Conversely, the bacterial
expression system using Escherichia coli is a powerful experimental
tool that can produce high levels of recombinant proteins [9-12].
However, the heterologous expression of membrane-bound
eukaryotic P450s in E. coli is still a challenge because the optimal
modification of each individual isoform sequence is usually re-
quired. Many researchers have attempted to overexpress mem-
brane-bound eukaryotic P450s in E. coli, particularly mammalian
P450s, but only a few studies have overexpressed P450s from fungi
[12,13]. In these investigations, the conventional strategy of mod-
ification of the 5’ end of the cDNA (for example, deletion and/or
replacement), which encodes the N-terminal hydrophobic domain
of P450, was used to increase the chance of expression of the mem-
brane-bound eukaryotic P450s in E. coli [9-12]. However, heterol-
ogous expression is still a trial-and-error process because it is
difficult to theoretically and systematically adapt the experimental
procedures. This may explain why only a few P450 species, espe-
cially from mammalian, have successfully been produced by heter-
ologous expression. It is, therefore, of great interest and
importance to explore heterologous expression using a wide
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variety of P450 species, which may provide/improve expression
strategies for eukaryotic P450s in E. coli.

Recently, we reported the genome-wide identification and iso-
lation of 304 full-length cDNAs of the P450s from the white-rot
basidiomycetes Phanerochaete chrysosporium [5] and the brown-
rot basidiomycetes Postia placenta [6]. To help promote the
biochemical and structural investigations of fungal P450s, in the
present study, we aimed to overexpress fungal P450s using an
E. coli expression system. Here, the heterologous expression of
the 304 P450 isoform species from the wood-rotting basidiomyce-
tes was investigated comprehensively. To the best of our knowl-
edge, this is the first and largest study in which large-scale
screening of the heterologous expression of eukaryotic P450s in
E. coli has been conducted. The findings reported here should help
advance the study and application of fungal P450s. Moreover, the
fundamental information will contribute to the development/
improvement of experimental strategies for the heterologous
expression of eukaryotic membrane-bound P450s.

2. Materials and methods
2.1. Chemicals

The L-arabinose, 5-aminolevulinic acid, carbenicillin, chloram-
phenicol, ethylenediaminetetraacetic acid (EDTA), and phenyl-
methylsulfonyl fluoride (PMSF) used in this study were
purchased from Wako Pure Chemicals (Osaka, Japan). The 2-[4-
(2-hydroxyethyl)-1-piperazinyl]ethanesulfonic acid (HEPES) was
purchased from Dojindo Laboratories (Kumamoto, Japan), isopro-
pyl-1-thio-B-p-galactopyranoside (IPTG) was purchased from
TaKaRa Bio (Otsu, Japan), and dithiothreitol, tryptone, and yeast
extract were purchased from Nakarai Tesque, Inc. (Kyoto, Japan).
Custom synthesized oligonucleotide primers were obtained from
Life Technologies Japan Ltd. (Tokyo, Japan). All the other chemicals
were reagent grade. Deionized water was obtained from the Milli Q
System (Millipore, Tokyo, Japan).

2.2. Construction of the expression plasmids

The construction strategy used for the expression plasmids is
outlined in Fig. S1. Briefly, the commercially obtained plasmids
PET22 and pET19 (Novagen, Madison, WI, USA) were modified to
introduce additional Nhel and Spel restriction sites. The resultant
plasmids were named pET22z and pET19z, respectively. The
expression plasmid was digested with different combinations of
Ndel, Ncol, Nhel, Spel, Hindlll, and Xhol. The truncated open reading
frames of the P450s were amplified from a cDNA library using Phu-
sion DNA polymerase (Thermo Fisher Scientific, Rockford, IL, USA)
with combinations of the gene-specific forward primers (see
Table S1) and the universal reverse primer for the template plasmid
PGYR (5-TCTAGACGATGATAAGCTGTCAAACATGAG-3'). Hydropho-
bic transmembrane domains (TMDs) in the open reading frames
of the P450s were predicted using SOSUI [14]. The amplified gene
fragments were subcloned into pBluescript II SK (+), digested with
restriction enzymes (see Table S1), purified using a QIAquick Gel
Extraction Kit (Qiagen, Tokyo, Japan), and ligated with the linear-
ized pET22z or pET19z. The resultant expression plasmids were
confirmed to contain the appropriate open reading frame.

2.3. Evaluation of heterologous expression of recombinant P450s

E. coli C41 (DE3) harboring the pGro7 plasmid (TaKaRa, Otsu,
Japan) was transformed with the expression plasmids. The trans-
formants harboring the expression plasmid were selected on Lur-
ia-Bertani (LB) agar plates containing carbenicillin (100 mg/L)

and chloramphenicol (20 mg/L). A fresh transformant was inocu-
lated into 1 mL of LB medium supplemented with carbenicillin
(100 mg/L) and chloramphenicol (20 mg/L) and grown overnight
at 37 °C on a 96-deep-well plate with shaking. After the preincuba-
tion, 0.3 mL of the growth culture was seeded into 30 mL of Terrific
Broth medium supplemented with carbenicillin (100 mg/L), chlor-
amphenicol (20 mg/L), and 5-aminolevulinic acid (0.5 mM) in a
100-mL Erlenmeyer flask. Cells were grown at 37 °C for 2.5 h with
shaking (140 rpm), typically resulting in ODggp = 0.8 — 1.0. The cul-
ture was then cooled to 24°C and supplemented with IPTG
(0.5 mM) and r-arabinose (2.0¢g/L) and incubated with shaking
(140 rpm) for 48 h. The E. coli cells from 25 mL culture were then
harvested by centrifugation (4500g), washed with 10 mL of
50 mM HEPES buffer (pH 7.4), and resuspended in 5.0 mL of lysis
buffer consisting of 50 mM HEPES (pH 7.4), 1 mM EDTA,1 mM
dithiothreitol, 1 mM PMSF, and 20% glycerol. The bacterial cells
were disrupted by bead beating with 0.2 mm zilconia beads using
Beads Crusher uT-12 (TAITEC). After removing cell debris by cen-
trifugation (18000g), carbon monoxide (CO) difference spectra of
the supernatants were recorded on a UV-vis spectrophotometer
equipped with a head-on photomultiplier (Hitachi; U3900H). The
recombinant P450 concentration was calculated based on the CO
difference spectrum with an extinction coefficient of 91 mM cm™!
for AA4s0-490 [15].

2.4. Preparation of chimeric P450s

The experimental procedure used for the construction of chime-
ric P450s is outlined in Fig. S2. Briefly, chimeric P450s were gener-
ated by inverse PCR and seamless cloning of the target genes. For
the inverse PCR, the gene segments between the Xbal/Notl and
Xbal/Xhol sites were first transferred from the pET-based expres-
sion vector to pLWO01 (step-1 in Fig. S2), developed by Mulrooney
and Waskell [16]. The resultant pLWO01-based plasmid containing
a P450 gene (origin of the N-terminal domain) was inversely
amplified to remove the catalytic domain (step-2 in Fig. S2). Mean-
while, the catalytic domain of the target P450 was amplified by
PCR from the pET-based expression plasmid (step-3 in Fig. S2)
and then fused with the inversely amplified plasmid (step-4 in
Fig. S2) using an In-Fusion® HD Cloning Kit (Clontech Laboratories,
Inc., Mountain View, CA, USA). The primer sequences used to con-
struct the chimeric P450s are listed in Table S2. Although the resul-
tant pLWO01-based plasmids were potentially useful for protein
expression, the gene segments between the Xbal/Notl and Xbal/
Xhol sites were re-transferred from the pLW-based plasmid to
pET22 (step-5 in Fig. S2) so that the expression levels could be
determined under the same conditions as those used for the
non-chimeric P450 expressed from the pET-based plasmid.
The resultant expression plasmids were confirmed to contain the
appropriate open reading frame.

3. Results and discussion

Eukaryotic membrane-bound P450s contain a helical hydropho-
bic TMD consisting of 20-30 amino acid residues at their N-termi-
nal ends. A series of membrane-bound P450s have been expressed
with sequence modifications such as TMD truncation and/or N-ter-
minal replacement [9-12]. Although N-terminal modification is
one of the conventional strategies that are widely used for heterol-
ogous expression of eukaryotic P450s, it is still questionable
whether replacement of the N-terminal domain with the se-
quences reported previously can increase the chance of expression
of the various P450s equally well. Previously, we demonstrated the
overexpression of a membrane-bound fungal P450, CYP5150A2,
from P. chrysosporium using the combination of a pET expression
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plasmid and the E. coli C41 (DE3) strain [12]. A partial truncation
but not the complete deletion of the TMD sequence was effective
for heterologous expression of CYP5150A2. In general, TMD-trun-
cated or TMD-modified eukaryotic P450s are still expressed in
the membrane fraction [12,17,18], suggesting that well-balanced
hydrophobicity at the N-terminal domain as well as non-toxicity
may be required for accumulation of the P450 protein in E. coli.
Therefore, in the present study, we explored the heterologous
expression of TMD-truncated variants of fungal P450s (Table S1).
Heterologous expression was examined without sequence modifi-
cation for the P450s that lacked a distinctive TMD (Table S1). In
addition, the expression plasmids of fungal P450s were co-trans-
formed with pGro7, which conditionally overexpresses GroEL/ES.

3.1. Large-scale screening of heterologous expression in E. coli

We performed large-scale screening of heterologous expression
using 304 fungal P450s and identified 27 species, including a pair
of allelic variants (CYP5137A4v1 and CYP5137A4v2), that could
be expressed with/without the simple deletion of the sequence
encoding the native TMD (Table 1). When protein expression was
induced with 0.5 mM IPTG at ODgggnm, = 0.8, accumulation of active
P450 in the bacterial cells showed a similar time-dependent profile
and the maximum expression level was observed 48-72 h after
incubation with IPTG (data not shown). After 48 h incubation,
expression levels for some P450 species were over 1000 nmol (lit-
ter culture)™!, similar to levels reported earlier using eukaryotic
P450s [10,19-22].

Among the 27 species, CYP505D6, CYP505D8v1, CYP5137A4v1,
and CYP5137A4v2 (see Table 1) were expressed without sequence
modifications. The P450s in the CYP505 family lack a distinctive
TMD and are loosely bound to the membrane in fungal cells
[23,24]. Previously, it was reported that the P450 from Fusarium

Table 1
Fungal P450s heterologously expressed in E. coli.

oxysporum (P450foxy), which belongs to the CYP505 family, was
expressed in the soluble fraction of E. coli [25]. Thus, some P450s
in the CYP505 family may be expressed in the cytosolic fraction
of E. coli, and consequently sequence modification was not essen-
tial for CYP505D6 and CYP505D8v1 to be expressed. In contrast,
the N-terminal sequences of the allelic variants CYP5137A4v1
and CYP5137A4v2 were rich in hydrophobic amino acid residues
despite their lack of a distinctive helical TMD. The hydrophobic
segments of CYP5137A4v1 and CYP5137A4v2 could be topologi-
cally aligned to the helical TMD that is present in the P450s
categorized into the CYP5137 family. Thus, the unique native
sequences in these variants might be less toxic and, therefore, suit-
able for expression.

Interestingly, the expression levels of CYP5137A4v1 and CY-
P5137A4v2 were significantly different although the amino acid
sequences that they encode were strikingly similar (97% shared se-
quence identity). Furthermore, CYP5148B4v2, CYP5037E1v1, and
CYP5037E5v2, but not their allelic variants, were expressed at sig-
nificant levels. Although the mechanisms behind the observations
should be further characterized, it is clear that very small differ-
ences in the sequence can affect the expression levels of the
P450s. The expression level of CYP5137A4v2 increased slightly
(1.7-fold) when the amino acid residue at the second position in
the sequence was changed from glycine to serine, the same as
the residue at that position of CYP5137A4v1, even though its
expression remained lower than that of CYP5137A4v1. In contrast,
the expression level of CYP5137A4v2 was decreased significantly
(0.2-fold) when an alanine residue replaced the glycine at the
second position even though it has been reported that alanine
encoded by GCT can increase the expression level of some P450s
[9,26]. Our result, however, suggests that an alanine residue at
the second position can sometimes have a negative effect on
heterologous expression.

P450 Amino acid deletion N-terminal sequence® Expression level (nmol/L culture)® Origin® GenBank Accession No.
CYP51F1¢ 2-37 MILSVMCNVIYQL|LPKDKSLPPVVW 1255+93 Pc AB597796
CYP53C2 2-22 MAIVAHILVWLLDP |HGIRSYPGPLL 219+ 46 Pc AB597795
CYP61A1 2-36 MTTAAILLSLLVI| EQSVYRYKKRHL 761+ 58 Pc AB597875
CYP505D6 None MATSTIPTPPSIPFLGHVASIEREVP 665 +22 Pc AB597812
CYP505D8v1 None MTNPIPCPPSLPFLGHVTHIEKEVPL 1333+75 Pp AB573395
CYP512E1 2-8 MAYIFISLATLAYL| KRLLWPDRQQL 973 +56 Pc AB597904
CYP5037B3 2-13 MALALIIVKAFLS | RTRRQGLYPPGP 156 + 14 Pc AB597793
CYP5037B4 2-12 MAILTVVLIRTAIA |RRKRWARLPPG 47263 Pc AB597792
CYP5037E1v1 2-13 MVLICAVGYAVAK|QRAKAPLPPGPA 228+18 Pp AB573357
CYP5037E5v2 2-11 MASLLVLVAARLLG | KRSSHLPMPPG 88+10 Pp AB573401
CYP5136A1 2-16 MLIRFYRWLFHHS | ISYLRGPVADSF 328 £21 Pc AB597902
CYP5137A2 2-6 MAVLLGALLWIV |RRILSRSSIRDIC 70+17 Pc AB597801
CYP5137A4v1 None MSTLSSAALLLTLACIYVAIRRLRRT 1820+ 71 Pp AB573266
CYP5137A4v2 None MGTLSSAALLLTIACIYVAIRRLRRT 355+8 Pp AB573300
CYP5139A1 2-14 MALVALIVYSVGPT | VWHVLTSPLRH 366 + 16 Pc AB597853
CYP5139D7v1 2-13 MAFSCWKLLKISG | LLQPYMSPLGDI 1230+ 26 Pp AB573402
CYP5141A4 2-12 MLFYCVQKYLEF | RAVVRSIHDHPGF 319+33 Pc AB597909
CYP5141A6 2-5 MVLFVSLLALGAL | KKHLDFRAAVDK 207+3 Pp AB573323
CYP5144C1 2-7 MSLLLAATLFLH | SRQKRYPLPPGPK 163 £29 Pc AB597883
CYP5146A1 2-12 MALAMMHVLTRCVR | TRLPYPPGPPE 380+8 Pc AB597863
CYP5147B1 2-8 MLIAALFVLSGLLNS |[RRRNMHVPPG 1310+ 154 Pc AB597857
CYP5148A1 2-15 MGILVLICLLLRV | VRRNTKRRLEQI 129+13 Pc AB597876
CYP5148A2 2-26 MAGILYIVLPFFF|RKNLVDKNGNSI 380+13 Pc AB597854
CYP5148B4v2 2-24 MASLILGILWLLPFLSG |HSYDVFGR 43+7 Pp AB573261
CYP5149A1 2-12 MTLLSIGIAPLFTL| WRRKRTSEAYL 33220 Pc AB597869
CYP5150A2¢ 2-14 MAIIWKLFQGYLV | KSPLDNIPGPER 1020 £22 Pc AB597898
CYP5150E1v2 2-9 MVLLALVLWALVK|RLTATKARAIDI 120+3 Pp AB573373

o

restriction sites of the plasmid.

Experiments were performed in triplicate. The data is the mean * SE.
Pc and Pp indicate P. chrysosporium and P. placenta, respectively.
Heterologous expression was reported previously [13].

Heterologous expression was reported previously [12].

o a n T

N-terminal amino acid sequence of the TMD-truncated variant. Arrow indicates the edge of the TMD in the native sequence. Amino acid residues in italics are from the
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3.2. Chimeric constructs for improvement of P450 expression levels

The vast majority of P450s possess a proline-rich region after
the positively charged residues neighboring the TMD. The
proline-rich region can be considered as the edge of the catalytic
domain because: (i) the proline residues in this region are highly
conserved; (ii) the proline-rich region is important for protein mat-
uration [27-29]; (iii) mutations in the proline-rich region can de-
crease enzymatic activity [30-32]; and (iv) the N-terminal TMD
serves mainly as a membrane anchor while the positively charged
amino acid residues that follow halt the translocation of the P450s
into the endoplasmic reticulum membranes in eukaryotic cells.
Therefore, we prepared a number of chimeric variants in which
the chimeric junction was fixed at the position before the pro-
line-rich region of the target P450 and after the N-terminal domain
of another P450 (Fig. 1).

The heterologous expression of chimeric CYP5037E1vl,
CYP5148A1, and CYP5150E1v2 was investigated intensively as
model species for which the wild-type expression levels are rela-
tively low. The N-terminal domains of the model P450s were
replaced with the corresponding domains of 25 of the 27 fungal
P450s whose expressions were confirmed in this study (the two
CYP505 P450s, CYP505D6 and CYP505D8v1, were excluded) and
an N-terminally modified human CYP3A4 (Fig. 1) [33]. A number
of chimeric variants of CYP5037E1v1 were expressed at a higher
level than the non-chimeric sequence (Fig. 2A). A chimeric
CYP5037E1v1 modified with the N-terminal of CYP5144C1 was
expressed at the highest level (2300 nmol/L culture), 10-times
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higher than the non-chimeric sequence. These results implied that
it was the N-terminal domain of CYP5037E1v1 that was less suitable
for translation and/or protein accumulation in E. coli and not matu-
ration of the catalytic domain that hindered high-level expression.
In contrast, chimeric variants of CYP5148A1 either accumulated at
expression levels that were similar to those for the non-chimeric
variant or lost expression after chimerization (Fig. 2B). The limited
expression level of CYP5148A1 can presumably be attributed to
molecular aspects of the catalytic domain. Conversely, the heterolo-
gous expression of CYP5150E1v2 was improved significantly when
the N-terminal domain was replaced with the sequence of
CYP5139D7v1, even though most of the chimeric variants resulted
in loss of expression (Fig. 2C). Interestingly, the relative expression
levels of chimeric CYP5037E1v1, CYP5148A1, and CYP5150E1v2
showed dissimilar profiles; for instance, the expression level of
CYP5037E1v1 was increased by chimerization with the N-terminal
domains of both CYP5144C1 and CYP5139D7v1, but only
CYP5139D7v1 was an effective chimeric partner for CYP5150E1v2.
Apparently, it is the combination of the N-terminal region and the
catalytic domain that is critical for high-level expression of the
fungal P450s in E. coli.

The N-terminal domains of both CYP5144C1 and CYP5139D7v1
could be flexible chimeric partners to promote the high-level
expression of membrane-bound P450s in E. coli, at least for several
species (Fig. 2). The N-terminal domain of CYP5144C1 was then
used to construct chimeric variants of the P450s that contained a
Pro-Pro-Gly-Pro sequence in their proline-rich regions and tested
for heterologous expression. The expression levels of the various

(A) Amino acid sequence around N-terminal and proline-rich region
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Fig. 2. Expression levels of chimeric CYP5037E1v1 (A), CYP5148A1 (B), and CYP5150E1v2 (C). The target P450s were modified with the N-terminal domains of (1) CYP51F, (2)
CYP53C2, (3) CYP61A1, (4) CYP512E1, (5) CYP5037B3, (6) CYP5037B4, (7) CYP5037E1v1, (8) CYP5037E5v2, (9) CYP5136A1, (10) CYP5137A2, (11) CYP5137A4v1, (12)
CYP5137A4v2, (13) CYP5139A1, (14) CYP5139D7v1, (15) CYP5141A4, (16) CYP5141A6, (17) CYP5144C1, (18) CYP5146A1, (19) CYP5147B1, (20) CYP5148A1, (21) CYP5148A2,
(22) CYP5148B4v2, (23) CYP5149A1, (24) CYP5150A2, (25) CYP5150E1v2, and (26) CYP3A4. Data for the non-chimeric form of P450 are represented by the striped bar (see

Table 1).

chimeric P450s were improved dramatically by the N-terminal
replacements, although not all of the constructs responded equally
well (Table 2). The N-terminal domain of CYP5139D7v1 also poten-
tially improved the chance of heterologous expression even when
the expression of the wild-type sequence looked unpromising
(Fig. 3). Up to now, we have successfully expressed CYP5139D1,
CYP5139D3v1, CYP5139D3v2, and CYP5139D8 after chimerization
with the N-terminal domain of CYP5139D7v1.

In summary, we conducted a large-scale screening of the heter-
ologous expression of fungal P450s in E. coli. This comprehensive
approach resulted in the identification of a number of P450s that
were readily expressed with/without the simple sequence deletion
of the N-terminal TMD. We also showed that N-terminal domain of
CYP5144C1 and CYP5139D7v1 could be flexible chimeric partners
that can promote the high-level expression of membrane-bound
P450s in E. coli. Moreover, this study revealed that the choice of
combinations of N-terminal and catalytic domains is critical for
high-level expression because the expression level of a chimeric

P450 could change dramatically depending on the N-terminal do-
main. Therefore, the variety of N-terminal sequences identified in
this study may increase the chance of heterologous expression of

Table 2
Expression level of chimeric P450 modified with the N-terminal domain of
CYP5144Cl1.

P450 Expression level (nmol/L Relative change (fold
culture) increased)

CYP5037B3 121353 7.8

CYP5037B4 0 0

CYP5037E1vl  2330+44 10.2

CYP5037E5v2 0O 0

CYP5146A1 1041 +£118 2.7

CYP5147B1 531+4 0.4

CYP5148A2 44+9 0.1

CYP5149A1 2172 £ 62 6.5
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Fig. 3. CO difference spectra for CYP5139D8. Solid line, chimeric CYP5139D8
modified with CYP5139D7v1; broken line, non-chimeric CYP5139D8.

a series of membrane-bound P450 from fungi as well as from other
animals and plants.
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