1,039 research outputs found

    ICR News 2020

    Get PDF
    This Annual Report covers from 1 January to 31 December 202

    Multiscale analysis of piezoelectric material by using EBSD-measured realistic model

    Get PDF
    Material properties of a polycrystal piezoelectric ceramic, a barium titanate BaTiO3, were analyzed by the two-scale crystallographic homogenization method. Threedimensional (3-D) micro-finite element (FE) model was constructed based on the electron backscatter diffraction (EBSD) measured crystal orientation distribution images. The images are piled up to a 3-D voxel data of crystal orientation distribution by repeating mechanically and chemically polishing, and EBSD measurement of the ceramic. We obtained 13 EBSD images of 128×100 pixels, which measurement interval was 0.635μm in-plane and the average amount of polishing was 1.66μm in thickness (normal) direction of specimen. Each voxel of EBSD was assigned into 8-node solid FE in-plane with maintaining resolution of EBSD measurement, and was divided into three FEs along thickness direction with same crystal orientation, because of improvement of aspect ratio of FE. The total number of FEs was 499,200 (=128×100×13×3) which corresponded to over two millions degrees of freedom. In order to realize a large-scale micro-analysis using EBSD-measured voxel FE model, the coupled problem of the piezoelectric material was solved by parallel conjugate gradient (CG) method combined with the block Gauss-Seidel (BGS) method. The coupled micro-FE equation to obtain characteristic function vectors was separated into two linear equations, such as the elastic deformation and electrostatic analyses, by employing the BGS method, and then the equations were solved by the parallel CG solver while substituting coupling terms each other. Therefore, nested iterative scheme was constructed on a PC cluster. In addition, the representative volume element (RVE) size was determined based on the orientation distribution function analyses of EBSD voxel data. The least RVE size was 25,000μm3, which corresponded to include 150 crystal grains

    A new crystal plasticity constitutive equation based on crystallographic misorientation theory

    Get PDF
    Since plastic deformation of polycrystal sheet metal is greatly affected by its initial and plastic deformed textures, multi-scale finite element (FE) analysis based on homogenization with considering micro-polycrystal morphology is required [1]. We formulated a new crystal plasticity constitutive equation to introduce not only the effect of crystal orientation distribution, but also the size of crystal grain and/or the effect of crystal grain boundary for the micro-FE analysis. The hardening evolution equation based on strain gradient theory [2], [3] was modified to introduce curvature of crystal orientation based on crystallographic misorientation theory. We employed two-scale structure, such as a microscopic polycrystal structure and a macroscopic elastic/plastic continuum. Our analysis code predicts the plastic deformation of polycrystal metal in the macro-scale, and simultaneously the crystal texture and misorientation evolutions in the micro-scale. In this study, we try to reveal the relationship between the plastic deformation and the microscopic crystal misorientation evolution by using the homogenized FE procedure with the proposed crystal plasticity constitutive equation. The crystallographic misorientation evolution, which affects on the plastic deformation of FCC polycrystal metal, was investigated by using the multi-scale FE analysis. We confirmed the availability of our analysis code employing the new constitutive equation through the comparison of a uniaxial tensile problem with the numerical result and the experimental one

    Detectability of Colon Polyp Using Computed Virtual Chromoendoscopy with Flexible Spectral Imaging Color Enhancement

    Get PDF
    The aim of this pilot study was to assess the feasibility of using computed virtual chromoendoscopy with the flexible spectral imaging color enhancement (FICE) for colon neoplasia screening. A modified back-to-back colonoscopy using FICE and white light in the right-sided colon was conducted prospectively for the consecutive patients attending for the postoperative (sigmoidectomy or anterior resection) follow-up colonoscopy. Histopathology of detected lesions was confirmed by evaluation of endoscopic resection or biopsy specimens. One-hundred and two patients were enrolled, and 100 patients (61 males and mean age 63 years) were finally analyzed. The total number of polyps detected by FICE and white light colonoscopy was 65 and 45, respectively. The miss rate for all polyps with FICE (24%) was significantly less than that with white light (46%) (P = 0.03). Colonoscopy using FICE could beneficially enhance the detection of neoplastic lesions in the right-sided colon compared to white light colonoscopy

    Blood flow structure and dynamics, and ejection mechanism in the left ventricle: Analysis using echo-dynamography

    Get PDF
    SummaryUsing our “echo-dynamography”, blood flow structure and flow dynamics during ventricular systole were investigated in 10 normal volunteers. The velocity vector distribution demonstrated blood flow during ejection was laminar along the ventricular septum. The characteristic flow structure was observed in each cardiac phases, early, mid- and late systole and was generated depending on the wall dynamic events such as peristaltic squeezing, hinge-like movement of the mitral ring plane, bellows action of the ventricle and dimensional changes in the funnel shape of the basal part of the ventricle, which were disclosed macroscopically by using the new technology of high speed scanning echo-tomography and microscopically by the strain rate distribution measured by phase tracking method.The pump function was reflected on the changes in the flow structure represented by the flow axis line distribution and the acceleration along the flow axis line. The acceleration of the ejection had three modes, “A”, “B” and “C”, and generated by the wall dynamic events. “A” appeared from the apical to the outflow area along the main flow axis line, “B” along the anterior mitral leaflet and the branched flow axis line, and “C” generated by the high speed vortex behind the mitral valve. The magnitude of the acceleration was estimated quantitatively from the velocity gradient along the flow axis line. Macroscopic and microscopic asynchrony in the myocardial contraction and extension appeared systematically in the local part of the ventricular wall, which was helpful for making the flow structure and for performing the smooth pump function
    corecore