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Abstract. Material properties of a polycrystal piezoelectric ceramic, a barium titanate 
BaTiO3, were analyzed by the two-scale crystallographic homogenization method. Three-
dimensional (3-D) micro-finite element (FE) model was constructed based on the electron 
backscatter diffraction (EBSD) measured crystal orientation distribution images. The images 
are piled up to a 3-D voxel data of crystal orientation distribution by repeating mechanically 
and chemically polishing, and EBSD measurement of the ceramic. We obtained 13 EBSD 
images of 128×100 pixels, which measurement interval was 0.635μm in-plane and the 
average amount of polishing was 1.66μm in thickness (normal) direction of specimen. Each 
voxel of EBSD was assigned into 8-node solid FE in-plane with maintaining resolution of 
EBSD measurement, and was divided into three FEs along thickness direction with same 
crystal orientation, because of improvement of aspect ratio of FE. The total number of FEs 
was 499,200 (=128×100×13×3) which corresponded to over two millions degrees of freedom. 
In order to realize a large-scale micro-analysis using EBSD-measured voxel FE model, the 
coupled problem of the piezoelectric material was solved by parallel conjugate gradient (CG) 
method combined with the block Gauss-Seidel (BGS) method. The coupled micro-FE 
equation to obtain characteristic function vectors was separated into two linear equations, 
such as the elastic deformation and electrostatic analyses, by employing the BGS method, and 
then the equations were solved by the parallel CG solver while substituting coupling terms 
each other. Therefore, nested iterative scheme was constructed on a PC cluster.  In addition, 
the representative volume element (RVE) size was determined based on the orientation 
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distribution function analyses of EBSD voxel data. The least RVE size was 25,000μm3, which 
corresponded to include 150 crystal grains. 

 
 
1 INTRODUCTION 

Piezoelectric ceramics, which have been used in actuators or sensors as a component of 
various electric and mechanical devices, consist of many crystal grains at a microscopic scale. 
Since each grain produces strongly anisotropic mechanical and electrical behaviour, the 
macroscopic properties of polycrystalline piezoelectric ceramics have large dependence of the 
microscopic crystal morphology. The multiscale analysis based on the homogenization 
method is needed for the piezoelectric materials to evaluate the effective macroscopic 
material properties [1]. Parallel processing technique is also required to the multiscale 
analysis because of large-scale coupling problem. 

This paper presents a multiscale piezoelectric analysis based on the crystallographic 
homogenization method. In the finite element (FE) equation for the conventional piezoelectric 
analysis, coefficient matrix is not positive definite and strongly ill-condition because of 
coupling terms between mechanical and electrical fields [2-4]. In this study, a parallel 
computing technique for piezoelectric FE analysis is newly developed based on the iterative 
partitioned coupling method with the parallel conjugate gradient (CG) solver. 

In order to construct a polycrystal microstructure model for the multi-scale FE analysis, a 
three-dimensional (3-D) representative volume element (RVE) which as crystal orientation 
distribution of a barium titanate (BaTiO3) ceramic is measured by using the scanning electron 
microscope (SEM) with electron back scattered diffraction (EBSD) apparatus. Accuracy of 
solution is discussed through some numerical experiments. In addition, The optimum RVE 
size is determined based on the orientation distribution function (ODF) analysis of the EBSD-
measured FE model. 

2 METHOD OF THE ANALYSIS 

2.1 Homogenization method for piezoelectric problem 
A 3-D polycrystalline macro-continuum is formed by periodic microscopic structures of a 

RVE as shown in Fig. 1. The region Y of the RVE is made up of an aggregate of well-defined 
crystal grains and it is very small compared with the dimension of the overall macro-
continuum region Ω, defined by a scale factor λ, which represents the reciprocal order of the 
repetition. 

 
Figure 1: Macroscopic, microscopic and crystal structures for the multiscale finite element analysis based on the 

homogenization method 

Micro-coordinate Crystal latticeMacro-coordinate RVE

Spontaneous
polarization


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The piezoelectric elasticity constitutive equation for the Cauchy stress tensor σij and the 
electric displacement vector Di is expressed as follows: 

 

(1)

 (2)

where the displacement vector uk and the electric potential ϕ are selected as unknown 
variables in the piezoelectric problems, εij, Ek are the strain tensor and the electric field, and 

 are the elastic compliance constant tensor, the piezoelectric strain constant, the 
dielectric constant tensor, respectively. The virtual work principle equation for the 
piezoelectric material is expressed as: 

 

(3)

(4)

In the homogenization procedure, macroscopic material properties ,  and  are 
obtained from the characteristic function by volume averaging in the RVE as follows: 

 

(5)

(6)

(7)

We assume that the piezoelectric material may have averaged properties in a macro 
continuum body. The characteristic function vectors {χmn}, {φmn}, {Φp} and {Rp} are 
obtained by solving the microscopic FE equations for the RVE as follows: 

 

(8)

(9)

where the characteristic functions have 9 components. The right-hand side vectors {tmn}, 
{qmn}, {tp} and {qp} are the constant values caused by the microscopic inhomogeneous 
structure. The coefficient matrices in both the linear equations are symmetric because of 

. The size of the linear equation depends on the number of nodal points in the 
RVE FE model, and the degrees of freedom may be a large number for the EBSD-measured 
FE model. 

Since the diagonal terms in the sub-matrix [–Kϕϕ] are negative, the coefficient matrix of 
both the liner equations (8) and (9) is not positive definite. Since difference of numerical 

σi j = CE
i jklεkl − eki jEk

= CE
i jkl
∂uk

∂xl
+ eki j

∂φ

∂xk
,

Di = eiklεkl + �
S
ikEk

= eikl
∂uk

∂xl
− �Sik

∂φ

∂xk
.

CE
i jkl, eki j, �

S
ik

�

Ωλ

�
CEλ

i jkl
∂uk

∂xl
+ eλni j

∂φ

∂xn

�
∂δui

∂x j
dΩ =

�

Γt

tiδuidΓ,
�
Ωλ

�
eλmkl
∂uk

∂xl
− �Sλmn

∂φ

∂xn

�
∂δφ

∂xm
dΩ =

�
Γρ

ρδφdΓ.

CEH
i jmn eH

pi j �S H
ip

CEH
i jmn =

1
|Y |

�

Y

�
microCE

i jmn +
microCE

i jkl

∂χmn
k

∂yl
+ microeki j

∂ϕmn

∂yk

�
dY,

eH
pi j =

1
|Y |

�
Y

⎛⎜⎜⎜⎜⎝microepi j +
microeki j

∂Rp

∂yk
+ microCE

i jkl

∂Φ
p
k

∂yl

⎞⎟⎟⎟⎟⎠ dY,

�S H
ip =

1
|Y |

�
Y

⎛⎜⎜⎜⎜⎝micro�Sip +
micro�Sik

∂Rp

∂yk
− microeikl

∂Φ
p
k

∂yl

⎞⎟⎟⎟⎟⎠ dY.

⎡⎢⎢⎢⎢⎢⎣
Kuu Kuφ

Kφu −Kφφ

⎤⎥⎥⎥⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩
χmn

ϕmn

⎫⎪⎪⎬⎪⎪⎭ =
⎧⎪⎪⎨⎪⎪⎩

tmn

qmn

⎫⎪⎪⎬⎪⎪⎭ , (m, n) = (1, 1), (2, 2), (3, 3), (1, 2), (1, 3), (2, 3),

⎡⎢⎢⎢⎢⎢⎣
Kuu Kuφ

Kφu −Kφφ

⎤⎥⎥⎥⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩
Φp

Rp

⎫⎪⎪⎬⎪⎪⎭ =
⎧⎪⎪⎨⎪⎪⎩

tp

qp

⎫⎪⎪⎬⎪⎪⎭ , p = 1, 2, 3,

�
Kuφ
�
=
�
Kφu
�T

1228



Hiroyuki Kuramae, Hidetoshi Sakamoto and Yasutomo Uetsuji. 

 4

order between [Kuu] and [Kϕϕ] is very large more than 1024 in actual problem, the coefficient 
matrix is strongly ill-condition. Therefore, the iterative solver such as the CG method, which 
is well-suited for distributed memory type parallel computing environment such as a PC 
cluster, is inapplicable to the equations. 

2.2 Iterative coupling method based on Block Gauss-Seidel method 
In order to apply the CG method to solve the system equations, they are rewritten to a 

partitioned form based on the Block Gauss-Seidel (BGS) method as follow: 

 
(10)

where unknown vector {u} corresponds to {χmn} and {Φp}, and {ϕ} corresponds to {φmn} and 
{Rp}, respectively. According the coupling term [Kuϕ] is moved to right hand side, 
displacement {u} and electrostatic potential {ϕ} vectors are partitioned to maintain positive 
definite of both the coefficient matrices as follows: 

 

(11)

(12)

The parallel CG solver [5], which is parallelized on the inner product of the coefficient 
matrix and the descent direction vector by row block distribution of the coefficient matrix, is 
applied to each partitioned equation until unknown vectors {u} and {ϕ} are converged with 
mutually substituting the coupling terms based on the BGS method as shown in Fig. 2. A 
nested iteration procedure of the BGS method including the CG iteration is constructed in this 
scheme. 

In this study, a hierarchical process distribution technique is introduced to reduce amount 
of data for communication. The CPUs of PC cluster are logically divided into 9 processor 
groups, and allocated to the micro FE equations using the partitioning form. In each processor 
group, the parallel CG solver based on the block partitioning is applied to the linier equations. 
The parallel analysis code is implemented by using the Fortran 90 language and the message 
passing interface (MPI) library MPICH 1.2 [6]. 

 
Figure 2: Flowchart of the iterative partitioned coupling procedure based on the block Gauss-Seidel (BGS) 

method 
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3 MULTISCALE ANALYSIS USING THREE-DIMENSIONAL EBSD-MEASURED 
MODEL 

3.1 Three-dimensional EBSD measurement of barium titanate 
We obtained distribution of crystal orientation in a 3-D parallelepiped box region of a 

BaTiO3 ceramic (Murata Manufacturing Co. Ltd.) by using the EBSD (Oxford Instruments 
plc, Link ISIS C.7272) implemented in the SEM (JEOL Datum Ltd., JSM-5410) [5]. The 
specimen was a circular disk of 15mm diameter and 1mm thickness, and it was electrically 
poled along the thickness direction. The observed surface was mechanically polished using 
3µm diamond particles (Marumoto Struers Co., DP-Spray) with a polishing sheet (DP-Mol).  
And then, it was chemically polished at pH3.5 using colloidal particles (OP-A) with a 
polishing sheet (DP-Chem). The surface of the isolative specimen was coated with the 
electrical conductive and amorphous osmium layer to defend the electrification due to 
electron beam. We employed an osmium coater (Meiwaforsis Co., Neoc-ST).  In addition, a 
silver paste (Fujikura Kasei Co. Ltd., type D-500) was applied to the surface except for the 
SEM-EBSD measurement region to leak the accumulated charge. 

Figure 3 shows crystal morphology images by the EBSD measurement. The scanning 
interval in plane direction was set to 0.635μm that is nearly smaller than one over ten of the 
average grain size. The interval of the polishing was set to 1.66μm in thickness direction. We 
obtained 13 images by repeating both the EBSD measurement and the polishing, and a 3-D 
EBSD model by the piled-up images as shown in Fig. 4. Therefore, the size of each voxel in 
the 3-D model is 0.635×0.635×1.660μm3. The average grain size was 6.71μm which was 
obtained by the intercept method. 

  
(a) 1st layer (b) 2nd layer (c) 3rd layer (d) 4th layer (e) 5th layer 

  
(f) 6th layer (g) 7th layer (h) 8th layer (i) 9th layer (j) 10th layer 

  
(k) 11th layer (l) 12th layer (m) 13th layer (n) color key for crystal orientation 

Figure 3: Crystal morphology images of a barium titanate (BaTiO3) ceramic by the SEM-EBSD measurement 
(measurement area: 81.3×63.5µm2, number of measurement points: 128×100 pixels, interval of 
measurement: 0.635µm) 
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3.2 Three-dimensional modeling and results 
A 3-D RVE FE model is constructed by using the EBSD measured images as shown in Fig. 

4. The 13 layers of EBSD images are stacked into 3-D parallelepiped box. Using the 8-node 
isoparametric solid element, one crystal orientation image pixel is assigned to a FE in-plane, 
and each image layer is divided into three FEs in the thickness direction. The total finite 
elements are over 500 thousand in the 3D model as summerized in Tabel 1. It corresponds to 
over 2 million degrees of freedom in the micro finite equation.  

In addition, two types of 2-dimensional (2-D) RVE FE models are also constructed to 
compare with the 3D model. One is the same in-plane size with the 3D model, which uses 
only the first layer of EBSD image, the other is employed for a large in-plane region, 2D-L 
model, which is constructed from four neighboring regions by EBSD measurements. 

 
Figure 4: Three-dimensional RVE-FE modeling 

Table 1: Properties of RVE-FE models 

 Model size [µm] Number of 
finite elements 

Number 
of nodes

Degrees of
freedom

Element size [µm] Aspect ratio
of elementy1 × y2 × y3 y1 × y2 × y3 

2D model 63.5 ×81.3  100× 128× 1= 12,800 20,058 104,232 0.635×0.635 ×0.635 1.00 
2D-L model 90.8 ×90.8  143× 143× 1= 20,449 41,472 165,888 0.635×0.635 ×0.635 1.00 
3D model 63.5 ×81.3×21.6 100× 128×39=521,160 521,160 2,084,640 0.635×0.635 ×0.553 0.87 

 
Figure 5: Complaison of accuracy of the homogenized material properties between 2D-L and 3D models 

Figure 5 shows the homogenized material properties by using the 3-D RVE model 
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as shown in Fig. 5. In this study, Jaffe’s experimental data [7] are used for single crystal 
material properties. In the 2-D analysis, since microscopic heterogeneity along thickness 
direction is excluded, material properties for in-plane are over estimated. 

In order to investigate relation between the number of layers of 3-D RVE model and 
accuracy of the homogenized material properties, the employing number of EBSD image 
layers in 3-D model is changed. Figure 6 (a) shows relative error of homogenized material 
properties with the 3D model which has 13 EBSD image layers. The one layer case 
corresponds to 2D model. The errors are less than 5% in three layers or more sampling cases. 
Figure 6 (b) shows parallel analysis time using 36 cores of the AMD Opteron HE275 2.2GHz 
CPUs connected by the Giga-bit Ethernet (1Gbps) network. The parallel analysis time is 
linear by the number of FEs. 

(a) Relationship between accuracy of homogenized 
material properties and number of sampling layers 
of the 3-D RVE-FE model 

(b) Relationship between analysis time and number of 
elements (number of layers) of 3-D RVE-FE 
model

Figure 6: Relationship between number of sampling layers and accuracy, and analysis time 

 
Figure 7: Image sampling of EBSD-measured crystal orientation distibution (4 types of plane size) 
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To investigate the optimum (minimum) RVE size, various sizes of RVE models were 
sampled from full-size EBSD model, in which 4 types of plane size as shown in Fig. 7, and 7 
types of number of layers from center layer. The total 28 models are sampled as shown in Fig. 
8. The one layer models as shown in Fig. 8 (a-1), (b-1), (c-1) and (d-1) are correspond to 2-D 
model, and 13 layers with 100×128 pixels as shown in Fig 8 (d-7) corredponds to the full-size 
3D model. 

Figure 9 shows relation between volume of models and the accuracy. The error bars in this 
figure means the smallest, the average and the largest errors of 17 components of the 
homogenized material properties. It is found that the accuracy is increased by the volume of 
RVE, and more than 25,000µm3 volume of RVE is needed for less than 5% error of solution. 
The 25,000µm3 volume of RVE contains 150 crystal grains due to average grain size 6.71µm. 

  
(a-1) 1 layer (a-2) 3 layers (a-3) 5 layers (a-4) 7 layers (a-5) 9 layers (a-6) 11 layers (a-7) 13 layers

(a) 40×68 pixels 

   
(b-1) 1 layer (b-2) 3 layers (b-3) 5 layers (b-4) 7 layers (b-5) 9 layers (b-6) 11 layers (b-7) 13 layers

(b) 60×88 pixels 

   
(c-1) 1 layer (c-2) 3 layers (c-3) 5 layers (c-4) 7 layers  (c-5) 9 layers (c-6) 11 layers (c-7) 13 layers

(c) 80×108 pixels 

   
(d-1) 1 layer (d-2) 3 layers (d-3) 5 layers (d-4) 7 layers (d-5) 9 layers (d-6) 11 layers (d-7) 13 layers

(d) 100×128 pixels 

Figure 8: Sampling RVE models from full-size EBSD model (4 types of plane size and 7 types of number of 
layers) 

 
Figure 9: Relationship between accuracy of homogenized materuial properties and volume size of RVE model 
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4 RVE DETERMINATION BASED ON THE ODF ANALYSIS 
To determine the optimum (minimum) RVE size, in this study, the orientation distribution 

function (ODF) analysis [8] is used. The ODF f (φ1, Φ, φ2) indicates intensity of the crystal 
orientation distribution in the Euler angle (φ1, Φ, φ2) space as follow: 

 
(13)

where  and  are spherical harmonic function and expansion coefficient, 
respectively. In this study, the ODF is analyzed for the crystal orientation distribution in RVE 
model every 5° in the Euler angle (φ1, Φ, φ2). Figure 10 shows results of the ODF intensity 
distribution in the 3-D Euler angle space for various sizes of RVE model. In the full-size 3D 
model which has 13 layers with 100×128 pixels as shown in Fig. 10 (d-7), some preferred 
orientations are appeared, but in the small model, the preferred orientation is disappeared. The 
larger model, the similar ODF distribution as full-size model is obtained. Therefore, the ODF 
results may be similar trend toward as accuracy of multiscale finite element results 
 

   
(a-1) 1 layer (a-2) 3 layers (a-3) 5 layers (a-4) 7 layers (a-5) 9 layers (a-6) 11 layers (a-7) 13 layers

(a) 40×68 pixels 

   
(b-1) 1 layer (b-2) 3 layers (b-3) 5 layers (b-4) 7 layers (b-5) 9 layers (b-6) 11 layers (b-7) 13 layers

(b) 60×88 pixels 

   
(c-1) 1 layer (c-2) 3 layers (c-3) 5 layers (c-4) 7 layers  (c-5) 9 layers (c-6) 11 layers (c-7) 13 layers

(c) 80×108 pixels 

   
(d-1) 1 layer (d-2) 3 layers (d-3) 5 layers (d-4) 7 layers (d-5) 9 layers (d-6) 11 layers (d-7) 13 layers

(d) 100×128 pixels 

Figure 10: ODF analysis results of various size of RVE models 

f (ϕ1,Φ, ϕ2) =
∞∑

l=0

l∑
m=−l

l∑
n=−l

Cmn
l T mn

l (ϕ1,Φ, ϕ2),

T mn
l (ϕ1,Φ, ϕ2) Cmn

l

1234



Hiroyuki Kuramae, Hidetoshi Sakamoto and Yasutomo Uetsuji. 

 10

In order to quantitively evaluate similarity of the ODF results between full-size model 
ffull(φ1, Φ, φ2) and sampled RVE model fsample(φ1, Φ, φ2), error sum of square S of ODF 
intensity distribution in the Euler angle space every 5° is calculated as follow: 

 
(14)

where N is number of evaluation points in the Euler angle space N = 19×19×19 = 6,859. 
Figure 11 (a) shows comparison between error of homogenized material properties, which 

is multiscale FE results, and error sum of square of the ODF analyses. Similar decrease curve 
lines are indicated in this figure. Figuer 11 (b) shows scatter diagram of error of homogenized 
properties and the error sum of squares of ODF. The coefficient of correlation is 0.85. It is 
reveal correlation between accuracy of FE result and ODF errors. Threfore, estimation of 
error of homogenized material properties based on ODF analysis is effective to determine 
RVE size. 

(a) Comparison between accuracy of multiscale FE results 
and error sum of squares of ODF 

(b) Scatter diagram for correlation analysis 
between accuracy of multiscale FE results and 
error sum of squares of ODF 

Figure 11: Determination of RVE size by ODF anarysis 

5 CONCLUSIONS 
3-D realistic RVE model based on the EBSD measurement images of crystal orientation 

distribution was constructed. Homogenized material properties by using several sizes of RVE 
models were obtained. Determination method of the optimum RVE size based on ODF 
analysis is proposed. In this time, over 25,000µm3 volume size is required which contains 150 
crystal grains due to average grain size. 
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