
594

 
 
 

A NEW CRYSTAL PLASTICITY CONSTITUTIVE EQUATION BASED 
ON CRYSTALLOGRAPHIC MISORIENTATION THEORY 

HIROYUKI KURAMAE*, YASUNORI NAKAMURA
†
, HIDETOSHI SAKAMOTO

$
 

HIDEO MORIMOTO
‡
 AND EIJI NAKAMACHI

§
 

* Department of Technology Management, Faculty of Engineering, 
Osaka Institute of Technology, 

5-16-1 Omiya, Asahi-ku, Osaka, 535-8585, Japan 
e-mail: kuramae@dim.oit.ac.jp, www.oit.ac.jp 

 
† Department of Mechanical Engineering, Faculty of Engineering, 

Osaka Sangyo University, 
3-1-1 Nakagaito, Daito, Osaka, 574-8530, Japan 

Email: nkmr@mech.osaka-sandai.ac.jp, www.osaka-sandai.ac.jp 
 

$ Department of Mechanical System Engineering, Faculty of Engineering, 
Kumamoto University, 

2-39-1 Kurokami, Kumamoto, 860-8555, Japan 
Email: sakamoto@mech.kumamoto-u.ac.jp, www.kumamoto-u.ac.jp 

 
‡ Yokohama R&D Laboratories, 

Furukawa Electric Co. Ltd., 
2-4-3 Okano, Nishi-ku, Yokohama, 220-0073, Japan 

Email: morimo@yokoken.furukawa.co.jp, www.furukawa.co.jp/ 
 

§ Department of Biomedical Engineering, Faculty of Life and Medical Sciences, 
Doshisha University, 

1-3 Tatara-Miyakodani, Kyotanabe, Kyoto, 610-0394, Japan 
Email: enakamac@mail.doshisha.ac.jp, www.doshisha.ac.jp 

 

Key words: Constitutive Equation, Crystal Plasticity, Multi-scale Analysis, Misorientation 
Theory. 

Abstract. Since plastic deformation of polycrystal sheet metal is greatly affected by its initial 
and plastic deformed textures, multi-scale finite element (FE) analysis based on 
homogenization with considering micro-polycrystal morphology is required [1].  We 
formulated a new crystal plasticity constitutive equation to introduce not only the effect of 
crystal orientation distribution, but also the size of crystal grain and/or the effect of crystal 
grain boundary for the micro-FE analysis.  The hardening evolution equation based on strain 
gradient theory [2], [3] was modified to introduce curvature of crystal orientation based on 
crystallographic misorientation theory.  We employed two-scale structure, such as a 
microscopic polycrystal structure and a macroscopic elastic/plastic continuum.  Our analysis 
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code predicts the plastic deformation of polycrystal metal in the macro-scale, and 
simultaneously the crystal texture and misorientation evolutions in the micro-scale.  In this 
study, we try to reveal the relationship between the plastic deformation and the microscopic 
crystal misorientation evolution by using the homogenized FE procedure with the proposed 
crystal plasticity constitutive equation.  The crystallographic misorientation evolution, which 
affects on the plastic deformation of FCC polycrystal metal, was investigated by using the 
multi-scale FE analysis.  We confirmed the availability of our analysis code employing the 
new constitutive equation through the comparison of a uniaxial tensile problem with the 
numerical result and the experimental one. 

1 INTRODUCTION 
Recently, multi-scale finite element (FE) analyses code are developed to evaluate 

macroscopic material properties such as the strength, the yield loci and the formability, by 
employing a realistic three-dimensional (3D) microscopic polycrystal structure obtained by 
using the scanning electron microscopy and the electron backscattering diffraction (SEM-
EBSD) measurements [4].  The experimental determination, interpretation, and the numerical 
simulation for polycrystal texture analyses at the micro-scale have been attracting the 
attention of researchers in the field of sheet metal forming [5-6].  Further, the progress of 
computer technology, such as parallel computing [7], promises an unprecedented means for a 
large-scale numerical calculation in this multi-scale analysis for the industrial applications.  
For the crystal plasticity constitutive equation, the isotropic and kinematical hardening 
evolutions are introduced [8].  In our two-scale homogenization theory to assess the sheet 
material formability, a realistic 3D representative volume element (RVE) is employed, which 
is determined by SEM-EBSD measurement. 

Until now, we have found many “virtual” RVE models, such as Voronoi polyhedron grain 
models, but they do not have the necessary crystal grain characteristic of location, size or 
orientation in 3D space.  Since the deformation and hardening are very much affected by the 
neighboring crystal grains, orientation and the grain size themselves. 

In this study, a new hardening evolution equation is proposed for assessment of crystal 
orientation rotation and misorientation evolution.  Our model is considered misorientation 
between adjacent regions across a boundary.  This involves a model, which assumes a simple 
geometrical relationship between crystal slip systems responsible for the rotation and 
misorientation. 

2 ELAST/VISCO-CRYSTAL PLASTICITY CONSTITUTIVE EQUATION BASED 
ON MISORIENTATION THEORY 

2.1 Definition of equivalent misorientation 
We calculated curvature of crystallographic misorientation to express geometrically 

necessary (GN) dislocation storage [9].  When the GN dislocation is stored during plastic 
deformation, sheet metal shows work hardening.  Thus, consideration of misorientation into 
hardening evolution equation is able to analyze sheet metal forming and to assess the 
deformation characterization accurately. 

We defined the three normal orthogonal coordinate systems for calculation of 
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crystallographic misorientation as shown in Fig. 1.  One is the sample coordinate system (ei -
xi). The second is the crystalline coordinate system (ii - yi), and third is (111) plane coordinate 
system (ji - i).  Relationship between the sample coordinate system and the crystalline 
coordinate system, the representative (111) plane coordinate system are expressed as 

j
j
iij

j
ii , ejei  , where j

i
j
i  ,  are coordinate transformation matrices. 
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Figure 1: Definition of the three normal orthogonal coordinate systems 

In the Fig. 2, j1, j2 and j3 express  112 ,  101  and  111  vectors on the (111) plane 
coordinate system (ji - i), which belongs with the crystalline coordinate system (ii - yi).  Rate 
of [111] direction 3j  is defined by using ji as follow: 

  jj b3  (1)

where b( = 1, 2) is the second fundamental metric tensor, which corresponds to a 
curvature tensor of crystal orientation, and is expressed as follows: 




 
j

j





 3b  
(2)

 jjb  b  (3)

The curvature tensor b corresponds to rate of normal direction of tangential plane, and is 
transformed by the coordinate transformation matrices 

lk  ,  to the sample coordinate 
system as follows: 

lkkllklk bb eeeeb  
  (4)
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klklb jj  ,3  (5)

where klb  is misorientation tensor.  Equivalent misorientation K is defined by the second 
invariant value of b as follow: 

klkl bbK
2
1

  (6)

This scalar value K depends on crystal orientation distribution and grain size. 

2.2 Introducing equivalent misorientation into crystal plasticity constitutive equation 
In this study, the equivalent misorientation caused by crystal orientation distribution is 

introduced into the crystallographic homogenized multi-scale FE procedure, which is based 
on the dynamic explicit scheme [1].  The strain rate dependent crystal plasticity constitutive 
equation [2, 8] is employed to the micro-FE analysis.  The crystalline viscoplastic shear strain 
rate )(a  of the power law form defined on the slip system (a) is expressed as follow: 
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where  a  is the resolved shear stress,  ag  is the reference shear stress,  a
0  is the reference 

shear strain rate, and m is the coefficient of strain rate sensitivity. In this study,  a
0  = 0.033 

and m = 0.01 are employed for FCC metal, respectively. 
The equivalent misorientation K is introduced into the hardening evolution equation as 

follow: 

     



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




N

b
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C

g
1

21
2

tanh
tanh

1
  (8)

where N is the total number of slip systems for the FCC crystal N = 12, C1 and C2 are 
constants of hardening parameters.  The hardening coefficient abh  for the nth power equation 
is expressed as follows:  

      abababab hqhqh   1  (9)

     1
00

 nCnChh   (10)

where the matrix abq  is introduced to describe the self and latent hardenings.  The  is the 
accumulated shear strain over all the slip systems, 0h  is the initial hardening modulus, and n
and C are the hardening exponent and the hardening coefficient, respectively.  These values 
including C1 and C2 in Eq. (8) are determined by the parameter identification calculation 
through the comparison with the experimental results. 

When K = 0, which is uniform crystal orientation distribution condition, the hardening 
evolution equation (8) becomes the conventional equation as follow: 
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


N

b

b
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a hg
1

  (11)

3 NUMERICAL RESULTS 

3.1 Material parameter identification by using 3D-EBSD measured polycrystal model 
We obtained distribution of crystal orientation in a 3D parallelepiped box region of the 

aluminum alloy sheet metal A5182-O by SEM-EBSD measurement, which is a material of the 
NUMISHEET 2008 benchmark problem [10], and developed a RVE-FE model as shown in 
Fig. 2.  The RVE-FE model is 5×5×5 voxel FEs by using 8-node solid element with 1000 
Gaussian integration points.  The crystal orientation distribution of the sheet metal measured 
by SEM-EBSD is assigned into the integration points on the RVE-FE model. 

Figure 3 shows comparison of stress-strain curves obtained by the experiment of the 
rolling direction (RD) tensile test and its multi-scale FE analyses by using identified 
parameters as summarized in Table 1.  In the multi-scale FE analyses, proportional loading is 
applied to macro-FE model, which consists of one 8-node solid element, combined with the 
micro RVE-FE model to obtain the homogenized stress.  It is good agreement of stress-strain 
relationships between the experiment and FE analyses.  In the multi-scale FE result by 
misorientation theory, the critical (initial) resolved shear stress (CRSS) 0 and the initial 
hardening modulus 0h  are smaller than conventional ones due to effect the misorientation 
hardening parameters C1 and C2.
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Figure 2: RVE-FE model of A5182-O (111×111×111m3)
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Table 1: Material parameters obtained by multi-scale FE analysis 

n 0 [MPa] h0 [MPa] C 0 [MPa] C1 C2

Misorientation 0.19 13.0 49.0 17.0 0.10 5.0 0.8 
Conventional 0.19 15.0 72.0 17.0 0.10 – – 

ND

TD RD

:Tensile direction 
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40
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
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eg
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 (a-1) 0°-3° (a-2) 3°-35° (a-3) 0°-35° 0°-3°-35° 
 (a) Bicrystal models (b) Tricrystal model 

Figure 4: Initial crystal orientation angle  distributions of micro-models 

Table 2: Euler angle (1, , 2) and crystal orientation angle 

1  2 
Grain 1 –12.3° 54.5° 44.7° 0.3° 
Grain 2 12.5° 57.7° 43.3° 3.2° 
Grain 3 89.6° 69.0° 8.84° 34.7° 

3.2 Multi-scale analysis by using bicrystal and tricrystal micro-models 
In order to consider the newly developed constitutive equation based on misorientation 

theory, simple initial crystal models, such as bicrystal and tricrystal models are employed to 
the micro-FE analysis, as shown in Fig. 4.  Three crystal orientations are selected from the 
SEM-EBSD crystal orientation distribution of A5182-O sheet metal as summarized in Table 2. 
Micro-FE model is 111×111×111m3 volume with 5×5×5 FEs, which is same as the 
polycrystal A5182-O RVE-FE model.  A crystal orientation angle  is defined as angle 
between crystal [111] direction and normal direction (ND) of sheet metal.  Consequently, a 
low tilt angle boundary model as shown in Fig. 4 (a-1) and high tilt angle boundary models as 
shown in Fig. 4 (a-2) and (a-3) are constructed in the bicrystal models, respectively.  In 
addition, tricrystal model as shown in Fig. 4 (b) is also constructed.  It has mixed with low 
and high tilt angle boundaries.  Figure 5 shows initial equivalent misorientation distribution 
on the center cross-section surface of the ND direction (ND = 55.5m) of micro-models.  The 
tilt angle is clearly described by the equivalent misorientation distribution. 

Figure 6 shows comparison of stress-strain curves obtained by the multi-scale FE analyses 
of the RD tensile problem by using three types of bicrystal models and the tricrystal model.  
The material parameters of A5182-O polycrystal sheet metal are used for these models.  In the 
tilt angle 0°-3° bicrystal model, the highest stress is achieved because the model has larger 
amount of active slip systems by smaller  value than the others, which means the crystal 
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(111) plane coincides with sheet plane.  The 35° single crystal model is the lowest stress.  The 
high tilt 0°-35° and 3°-35° bicrystal models, and the 0°-3°-35° tricrystal model are 
combination behavior between the low tilt model and the 35° single crystal model.  

Figure 7 shows texture evolution on {111} pole figures compared with the initial texture 
and after 0.5 tensile deformation.  The textures are evoluted to toward preferred orientation of 
tensile deformation such as the Copper orientation {112}<111>.  The crystal angle  is also 
rotated by tensile deformation as shown in Fig. 8.  According to crystal angle rotation, 
equivalent misorientation distribution is also changed as shown in Fig. 9.  In the 0°-3° low tilt 
angle bicrystal model, grain boundary is disappearance and crystal binding each other.  In the 
high title angle bicrystal models 0°-35° and 3°-35°, however, grain boundary has been 
remained during tensile deformation. 

Since there is a triple point in the tricrystal model and interaction of each grain, the 
subgrain growth and localization of misorientation are occurred as shown in Fig. 9 (b).  
Figure 10 shows history of crystal angle  rotation of tricrystal model during tensile 
deformation.  While the crystal = 35° as red solid line did not almost rotate, crystals = 0° 
and 3° as blue and purple solid lines rotated toward 15° and then low tilt angle boundary 
between 0° and 3° is disappeared.  It could predict physical evidence that crystal rotations and 
misorientation effect on material hardening by using our multi-scale analyses with the new 
hardening evolution equation. 
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Figure 5: Initial equivalent misorientation distributions of micro models 
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Figure 7: Texture evolution on {111} pole figures 
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Figure 8: Distributions of Crystal orientation angle  evolutions at 0.5 tensile strain 
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Figure 9: Distributions of equivalent misorientation evolutions at 0.5 tensile strain 

4 CONCLUSIONS 
We suggest the new hardening evolution equation based on crystallographic misorientation 

and carried out tensile analyses.  Misorientation evolution and forming subgrain boundary 
were expressed.  We conclude that consideration of misorientation is necessary for crystal 
plastic analysis. 
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Figure 10: Crystal rotation histories of tricrystal model 
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