302 research outputs found

    Rotigotine suppresses sleep-related muscle activity augmented by injection of dialysis patients’ sera in a mouse model of restless legs syndrome

    Get PDF
    Idiopathic restless legs syndrome (RLS) has a genetic basis wherein BTBD9 is associated with a higher risk of RLS. Hemodialysis patients also exhibit higher rates of RLS compared with the healthy population. However, little is known about the relationship of BTBD9 and end-stage renal disease to RLS pathophysiology. Here we evaluated sleep and leg muscle activity of Btbd9 mutant (MT) mice after administration of serum from patients with either idiopathic or RLS due to end-stage renal disease (renal RLS) and investigated the efficacy of treatment with the dopamine agonist rotigotine. At baseline, the amount of rapid eye movement (REM) sleep was decreased and leg muscle activity during non-REM (NREM) sleep was increased in MT mice compared to wild-type (WT) mice. Wake-promoting effects of rotigotine were attenuated by injection of serum from RLS patients in both WT and MT mice. Leg muscle activity during NREM sleep was increased only in MT mice injected with serum from RLS patients of ideiopatic and renal RLS. Subsequent treatment with rotigotine ameliorated this altered leg muscle activity. Together these results support previous reports showing a relationship between the Btbd9/dopamine system and RLS, and elucidate in part the pathophysiology of RLS

    Vertex Corrections on the Anomalous Hall Effect in Spin-polarized Two-dimensional Electron Gases with Rashba Spin-orbit Interaction

    Full text link
    We study the effect of disorder on the intrinsic anomalous Hall (AH) conductivity in a spin-polarized two-dimensional electron gas with a Rashba-type spin-orbit interaction. We find that AH conductivity vanishes unless the lifetime is spin-dependent, similar to the spin Hall (SH) conductivity in the non-magnetic system. In addition, we find that the SH conductivity does not vanish in the presence of magnetic scatterers. We show that the SH conductivity can be controlled by changing the amount of the magnetic impurities.Comment: Tex file only, no figure

    Collagen Framework of the Volar Plate of Human Proximal Interphalangeal Joint

    Get PDF
    The functional roles of the three-dimensional fibrillar ultrastructure of the proximal interphalangeal joint volar plates of human fingers were studied by light microscopy and scanning electron microscopy. The results revealed that the volar plate consists of three layers of fibers. The first layer forms an intracavity wall with two parts, the proximal &#34;membranous portion&#34;, and the distal &#34;meniscoid protrusion&#34; that is separated from the middle phalangeal base by a &#34;recess&#34;. The second layer contains the &#34;check ligament&#34;, which lies parallel to the fibers of the tendon, anchors tightly into the middle phalangeal base, and protects the joint from hyperextension. The third layer connects to the fibers from the accessory ligament and ligamentous tendon sheath of the A3 pulley, perpendicularly crosses the fibers of the tendon, becomes the periosteum of the middle phalangeal base, and functions as a hanging support for the volar plate and as a gliding floor for the flexor tendon.</p

    X-ray structure of Galdieria Rubisco complexed with one sulfate ion per active site

    Get PDF
    AbstractRibulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the reactions of carboxylation and oxygenation of ribulose-1,5-bisphosphate. These reactions require that the active site should be closed by a flexible loop (loop 6) of the large subunit. Rubisco from a red alga, Galdieria partita, has the highest specificity for carboxylation reaction among the Rubiscos hitherto reported. The crystal structure of unactivated Galdieria Rubisco has been determined at 2.6 Å resolution. The electron density map reveals that a sulfate binds only to the P1 anion-binding site of the active site and the loop 6 is closed. Galdieria Rubisco has a unique hydrogen bond between the main chain oxygen of Val332 on the loop 6 and the ϵ-amino group of Gln386 of the same large subunit. This interaction is likely to be crucial to understanding for stabilizing the loop 6 in the closed state and to making a higher affinity for anionic ligands

    Plausible phosphoenolpyruvate binding site revealed by 2.6 Å structure of Mn2+-bound phosphoenolpyruvate carboxylase from Escherichia coli11The coordinates and structure factors have been deposited in the Protein Data Bank (accession number 1QB4).

    Get PDF
    AbstractWe have determined the crystal structure of Mn2+-bound Escherichia coli phosphoenolpyruvate carboxylase (PEPC) using X-ray diffraction at 2.6 Å resolution, and specified the location of enzyme-bound Mn2+, which is essential for catalytic activity. The electron density map reveals that Mn2+ is bound to the side chain oxygens of Glu-506 and Asp-543, and located at the top of the α/β barrel in PEPC. The coordination sphere of Mn2+ observed in E. coli PEPC is similar to that of Mn2+ found in the pyruvate kinase structure. The model study of Mn2+-bound PEPC complexed with phosphoenolpyruvate (PEP) reveals that the side chains of Arg-396, Arg-581 and Arg-713 could interact with PEP

    Structure of the inhibitor complex of old yellow enzyme from Trypanosoma cruzi

    Get PDF
    The structures of old yellow enzyme from Trypanosoma cruzi which produces prostaglandin F2α from PGH2 have been determined in the presence or absence of menadione

    シガケン ナガハマシ ホウゲン ノ ソザイ タイグウ ケイシキ ニ カンスル キジュツテキ ケンキュウ

    Get PDF
    The isomerization of n-hexadecane over Pt–WO3 catalysts supported on TiO2–SiO2 synthesized by glycothermal reaction with various Si/Ti molar ratios was examined. The catalyst performance depended on Si/Ti molar ratio and WO3 loading. The characterization of the catalysts by XRD, XAFS, UV-vis and so on revealed that with increasing the WO3 loading, the structure of surface W species changed from monomeric species to polytungstate species, which is considered to significantly affect the isomerization selectivity of the catalysts

    Approach for growth of high-quality and large protein crystals

    Get PDF
    Three crystallization methods, including crystallization in the presence of a semi-solid agarose gel, top-seeded solution growth (TSSG) and a large-scale hanging-drop method, have previously been presented. In this study, crystallization has been further evaluated in the presence of a semi-solid agarose gel by crystallizing additional proteins. A novel crystallization method combining TSSG and the large-scale hanging-drop method has also been developed

    Ferromagnetism and giant magnetoresistance in the rare earth fullerides Eu6-xSrxC60

    Get PDF
    We have studied crystal structure, magnetism and electric transport properties of a europium fulleride Eu6C60 and its Sr-substituted compounds, Eu6-xSrxC60. They have a bcc structure, which is an isostructure of other M6C60 (M represents an alkali atom or an alkaline earth atom). Magnetic measurements revealed that magnetic moment is ascribed to the divalent europium atom with S = 7/2 spin, and a ferromagnetic transition was observed at TC = 10 - 14 K. In Eu6C60, we also confirm the ferromagnetic transition by heat capacity measurement. The striking feature in Eu6-xSrxC60} is very large negative magnetoresistance at low temperature; the resistivity ratio \rho(H = 9 T)/\rho(H = 0 T) reaches almost 10^{-3} at 1 K in Eu6C60. Such large magnetoresistance is the manifestation of a strong pi-f interaction between conduction carriers on C60 and 4f electrons of Eu.Comment: 5 pages, 4 figure

    Visceral fat obesity is the key risk factor for the development of reflux erosive esophagitis in 40–69-years subjects

    Get PDF
    [Background] Visceral fat obesity can be defined quantitatively by abdominal computed tomography, however, the usefulness of measuring visceral fat area to assess the etiology of gastrointestinal reflux disease has not been fully elucidated. [Methods] A total of 433 healthy subjects aged 40–69 years (234 men, 199 women) were included in the study. The relationship between obesity-related factors (total fat area, visceral fat area, subcutaneous fat area, waist circumference, and body mass index) and the incidence of reflux erosive esophagitis was investigated. Lifestyle factors and stomach conditions relevant to the onset of erosive esophagitis were also analyzed. [Results] The prevalence of reflux erosive esophagitis was 27.2% (118/433; 106 men, 12 women). Visceral fat area was higher in subjects with erosive esophagitis than in those without (116.6 cm2 vs. 64.9 cm2, respectively). The incidence of erosive esophagitis was higher in subjects with visceral fat obesity (visceral fat area ≥ 100 cm2) than in those without (61.2% vs. 12.8%, respectively). Visceral fat obesity had the highest odds ratio (OR) among obesity-related factors. Multivariate analysis showed that visceral fat area was associated with the incidence of erosive esophagitis (OR = 2.18), indicating that it is an independent risk factor for erosive esophagitis. In addition, daily alcohol intake (OR = 1.54), gastric atrophy open type (OR = 0.29), and never-smoking history (OR = 0.49) were also independently associated with the development of erosive esophagitis. [Conclusions] Visceral fat obesity is the key risk factor for the development of reflux erosive esophagitis in subjects aged 40–69 years
    corecore