187 research outputs found

    Optimization of Anodized-Aluminum Pressure-Sensitive Paint by Controlling Luminophore Concentration

    Get PDF
    Anodized-aluminum pressure-sensitive paint (AA-PSP) has been used as a global pressure sensor for unsteady flow measurements. We use a dipping deposition method to apply a luminophore on a porous anodized-aluminum surface, controlling the luminophore concentration of the dipping method to optimize AA-PSP characteristics. The concentration is varied from 0.001 to 10 mM. Characterizations include the pressure sensitivity, the temperature dependency, and the signal level. The pressure sensitivity shows around 60 % at a lower concentration up to 0.1 mM. Above this concentration, the sensitivity reduces to a half. The temperature dependency becomes more than a half by setting the luminophore concentration from 0.001 to 10 mM. There is 3.6-fold change in the signal level by varying the concentration. To discuss an optimum concentration, a weight coefficient is introduced. We can arbitrarily change the coefficients to create an optimized AA-PSP for our sensing purposes

    Settlement Fund Circulation Problem

    Get PDF
    In the economic activities, the central bank has an important role to cover payments of banks, when they are short of funds to clear their debts. For this purpose, the central bank timely puts funds so that the economic activities go smooth. Since payments in this mechanism are processed sequentially, the total amount of funds put by the central bank critically depends on the order of the payments. Then an interest goes to the amount to prepare if the order of the payments can be controlled by the central bank, or if it is determined under the worst case scenario. This motivates us to introduce a brand-new problem, which we call the settlement fund circulation problem. The problems are formulated as follows: Let G=(V,A) be a directed multigraph with a vertex set V and an arc set A. Each arc ain A is endowed debt d(a)ge 0, and the debts are settled sequentially under a sequence pi of arcs. Each vertex vin V is put fund in the amount of p_{pi}(v)ge 0 under the sequence. The minimum/maximum settlement fund circulation problem (Min-SFC/Max-SFC) in a given graph G with debts d: Arightarrow mathbb{R}_{+}cup {0} asks to find a bijection pi:Ato {1,2,dots,|A|} that minimizes/maximizes the total funds sum _{vin V}p_{pi }(v). In this paper, we show that both Min-SFC and Max-SFC are NP-hard; in particular, Min-SFC is (I) strongly NP-hard even if G is (i) a multigraph with |V|=2 or (ii) a simple graph with treewidth at most two,and is (II) (not necessarily strongly) NP-hard for simple trees of diameter four, while it is solvable in polynomial time for stars. Also, we identify several polynomial time solvable cases for both problems

    A Dipping Duration Study for Optimization of Anodized-Aluminum Pressure-Sensitive Paint

    Get PDF
    Anodized-aluminum pressure-sensitive paint (AA-PSP) uses the dipping deposition method to apply a luminophore on a porous anodized-aluminum surface. We study the dipping duration, one of the parameters of the dipping deposition related to the characterization of AA-PSP. The dipping duration was varied from 1 to 100,000 s. The properties characterized are the pressure sensitivity, temperature dependency, and signal level. The maximum pressure sensitivity of 65% is obtained at the dipping duration of 100 s, the minimum temperature dependency is obtained at the duration of 1 s, and the maximum signal level is obtained at the duration of 1,000 s, respectively. Among the characteristics, the dipping duration most influences the signal level. The change in the signal level is a factor of 8.4. By introducing a weight coefficient, an optimum dipping duration can be determined. Among all the dipping parameters, such as the dipping duration, dipping solvent, and luminophore concentration, the pressure sensitivity and signal level are most influenced by the dipping solvent

    Validation of radiative transfer computation with Monte Carlo method for ultra-relativistic background flow

    Get PDF
    We developed a three-dimensional radiative transfer code for an ultra-relativistic background flow-field by using the Monte Carlo (MC) method in the context of gamma-ray burst (GRB) emission. For obtaining reliable simulation results in the coupled computation of MC radiation transport with relativistic hydrodynamics which can reproduce GRB emission, we validated radiative transfer computation in the ultra-relativistic regime and assessed the appropriate simulation conditions. The radiative transfer code was validated through two test calculations: (1) computing in different inertial frames and (2) computing in flow-fields with discontinuous and smeared shock fronts. The simulation results of the angular distribution and spectrum were compared among three different inertial frames and in good agreement with each other. If the time duration for updating the flow-field was sufficiently small to resolve a mean free path of a photon into ten steps, the results were thoroughly converged. The spectrum computed in the flow-field with a discontinuous shock front obeyed a power-law in frequency whose index was positive in the range from 1 to 10 MeV. The number of photons in the high-energy side decreased with the smeared shock front because the photons were less scattered immediately behind the shock wave due to the small electron number density. The large optical depth near the shock front was needed for obtaining high-energy photons through bulk Compton scattering. Even one-dimensional structure of the shock wave could affect the results of radiation transport computation. Although we examined the effect of the shock structure on the emitted spectrum with a large number of cells, it is hard to employ so many computational cells per dimension in multi-dimensional simulations. Therefore, a further investigation with a smaller number of cells is required for obtaining realistic high-energy photons with multi-dimensional computations

    Direct Damage to a Vertebral Artery Better Predicts a Vertebral Artery Injury than Elongation in Cervical Spine Dislocation

    Get PDF
    Cervical spine dislocation and fracture of a transverse process are isolated risk factors for vertebral artery injuries (VAIs), which can cause a life-threatening ischemic stroke. Since in vivo experiments are not possible, it has not been unclear whether damage to or extension of vertebral arteries is more predictive of a VAI. To identify the imaging characteristics associated with VAI, we analyzed 36 vertebral arteries from 22 cervical spine dislocation patients who underwent computed tomography angiography (Aug. 2008-Dec. 2014). We evaluated (1) the posttraumatic elongation of the vertebral artery and (2) the presence of fracture involving the transverse foramen. VAI was found in 20 (56%) of the 36 vertebral arteries. The rate of residual shift (vertebral artery elongation) was not markedly different between the VAI and no-VAI groups. However, the rate of >1 mm displacement into the foramen and that of fracture with gross displacement (≥2 mm) differed significantly between the groups. We found that greater displacement of fractured transverse processes with cervical spine dislocation was a risk factor for VAI. These results suggest that direct damage to the vertebral arteries by transverse process fragments is more likely to predict a VAI compared to elongation, even in cervical spine dislocation

    FEDSM2002-31229 CALCULATION OF TWO-PHASE FLOWS IN AN OIL SEPARATOR BY USING A CUBIC INTERPOLATED PROPAGATION CODE ON UNSTRUCTURED GRID SPACES

    Get PDF
    ABSTRACT We have developed a cubic interpolated propagation (CIP) code combined with a finite volume method using unstructured grid spaces. The CIP code, which can solve both compressible and incompressible flows simultaneously, was used to calculate gas-liquid flows -in this case, waterspouts-in an oil separator. We found that waterspouts raise the oil at the bottom of the separator's chamber and lower the efficiency of oil separation remarkably. We also found that the waterspouts can be classified as circulatory or non-circulatory and that they are caused by a low-pressure core in the discharge pipe. Furthermore, we predicted the critical conditions under which the waterspouts occur, and these predictions agree with measurements taken with a test separator
    • …
    corecore