73 research outputs found

    Quantitative Prediction of the Landscape of T Cell Epitope Immunogenicity in Sequence Space

    Get PDF
    Immunodominant T cell epitopes preferentially targeted in multiple individuals are the critical element of successful vaccines and targeted immunotherapies. However, the underlying principles of this “convergence” of adaptive immunity among different individuals remain poorly understood. To quantitatively describe epitope immunogenicity, here we propose a supervised machine learning framework generating probabilistic estimates of immunogenicity, termed “immunogenicity scores,” based on the numerical features computed through sequence-based simulation approximating the molecular scanning process of peptides presented onto major histocompatibility complex (MHC) by the human T cell receptor (TCR) repertoire. Notably, overlapping sets of intermolecular interaction parameters were commonly utilized in MHC-I and MHC-II prediction. Moreover, a similar simulation of individual TCR-peptide interaction using the same set of interaction parameters yielded correlates of TCR affinity. Pathogen-derived epitopes and tumor-associated epitopes with positive T cell reactivity generally had higher immunogenicity scores than non-immunogenic counterparts, whereas thymically expressed self-epitopes were assigned relatively low scores regardless of their immunogenicity annotation. Immunogenicity score dynamics among single amino acid mutants delineated the landscape of position- and residue-specific mutational impacts. Simulation of position-specific immunogenicity score dynamics detected residues with high escape potential in multiple epitopes, consistent with known escape mutations in the literature. This study indicates that targeting of epitopes by human adaptive immunity is to some extent directed by defined thermodynamic principles. The proposed framework also has a practical implication in that it may enable to more efficiently prioritize epitope candidates highly prone to T cell recognition in multiple individuals, warranting prospective validation across different cohorts

    Incidence of sexually transmitted hepatitis C virus infection among men who have sex with men in Japan from 2009 to 2023

    Get PDF
    Although the prevalence of hepatitis C virus (HCV) infection has decreased significantly with the advent of direct-acting antiviral agents, HCV is known to spread as a sexually transmitted disease among men who have sex with men (MSM), and this study aims to provide a perspective on the future prevalence of HCV in Japan. We examined incidence in two groups of MSM with HIV attending our institution in this retrospective cohort study, from 2009 to 2019 and from 2020 to May 2023 and investigated their background factors. Twenty-two cases were newly confirmed to be HCV infection in 2009-2019 and a total of 9 cases in 2020-2023, with an incidence rate of 5.04 per 1000 person-years in 2009-2019 and 5.55 per 1000 person-years in 2020-2023. All of them were diagnosed at routine outpatient visits for HIV, and few cases were considered to have symptoms of suspected hepatitis that led to a visit to the hospital and a diagnosis of HCV. Although HCV is still prevalent among MSM in Japan, it is possible that it would not have been diagnosed without testing at regular visits as in the case of people with HIV, and that the true prevalence rate among MSM, including non-HIV-infected persons, may be much higher

    Electrical Test of Resistive and Capacitive Open Defects at Data Bus in 3D Memory IC

    Get PDF
    We propose an electrical test method of resistive and capacitive open defects occurring at data bus lines between dies, and between dies and I/O pins in 3D memory ICs. The test method is based on supply current of an IC. The number of test vectors for a 3D memory IC made of ND memory dies in the test method is 10∙ND and small. Also, defective interconnects are located by the test method. Feasibility of the tests is examined by some experiments for a circuit made of an SRAM IC on a printed circuit board. The experimental results show that capacitive open defects and resistive open ones whose resistance values are greater than 200Ω can be detected by the test method

    Malaria Parasites Hijack Host Receptors From Exosomes to Capture Lipoproteins

    Get PDF
    Malaria parasites cannot multiply in host erythrocytes without cholesterol because they lack complete sterol biosynthesis systems. This suggests parasitized red blood cells (pRBCs) need to capture host sterols, but its mechanism remains unknown. Here we identified a novel high-density lipoprotein (HDL)-delivery pathway operating in blood-stage Plasmodium. In parasitized mouse plasma, exosomes positive for scavenger receptor CD36 and platelet-specific CD41 increased. These CDs were detected in pRBCs and internal parasites. A low molecular antagonist for scavenger receptors, BLT-1, blocked HDL uptake to pRBCs and suppressed Plasmodium growth in vitro. Furthermore, platelet-derived exosomes were internalized in pRBCs. Thus, we presume CD36 is delivered to malaria parasites from platelets by exosomes, which enables parasites to steal HDL for cholesterol supply. Cholesterol needs to cross three membranes (RBC, parasitophorous vacuole and parasite’s plasma membranes) to reach parasite, but our findings can explain the first step of sterol uptake by intracellular parasites

    Correlation analysis between gut microbiota alterations and the cytokine response in patients with coronavirus disease during hospitalization

    Get PDF
    The role of the intestinal microbiota in coronavirus disease 2019 (COVID-19) is being elucidated. Here, we analyzed the temporal changes in microbiota composition and the correlation between inflammation biomarkers/cytokines and microbiota in hospitalized COVID-19 patients. We obtained stool specimens, blood samples, and patient records from 22 hospitalized COVID-19 patients and performed 16S rRNA metagenomic analysis of stool samples over the course of disease onset compared to 40 healthy individual stool samples. We analyzed the correlation between the changes in the gut microbiota and plasma proinflammatory cytokine levels. Immediately after admission, differences in the gut microbiota were observed between COVID-19 patients and healthy subjects, mainly including enrichment of the classes Bacilli and Coriobacteriia and decrease in abundance of the class Clostridia. The bacterial profile continued to change throughout the hospitalization, with a decrease in short-chain fatty acid-producing bacteria including Faecalibacterium and an increase in the facultatively anaerobic bacteria Escherichia-Shigella. A consistent increase in Eggerthella belonging to the class Coriobacteriia was observed. The abundance of the class Clostridia was inversely correlated with interferon-γ level and that of the phylum Actinobacteria, which was enriched in COVID-19, and was positively correlated with gp130/sIL-6Rb levels. Dysbiosis was continued even after 21 days from onset. The intestines tended to be an aerobic environment in hospitalized COVID-19 patients. Because the composition of the gut microbiota correlates with the levels of proinflammatory cytokines, this finding emphasizes the need to understand how pathology is related to the temporal changes in the specific gut microbiota observed in COVID-19 patients. IMPORTANCE There is growing evidence that the commensal microbiota of the gastrointestinal and respiratory tracts regulates local and systemic inflammation (gut-lung axis). COVID-19 is primarily a respiratory disease, but the involvement of microbiota changes in the pathogenesis of this disease remains unclear. The composition of the gut microbiota of patients with COVID-19 changed over time during hospitalization, and the intestines tended to be an aerobic environment in hospitalized COVID-19 patients. These changes in gut microbiota may induce increased intestinal permeability, called leaky gut, allowing bacteria and toxins to enter the circulatory system and further aggravate the systemic inflammatory response. Since gut microbiota composition correlates with levels of proinflammatory cytokines, this finding highlights the need to understand how pathology relates to the gut environment, including the temporal changes in specific gut microbiota observed in COVID-19 patients

    A Randomized Phase 2/3 Study of Ensitrelvir, a Novel Oral SARS-CoV-2 3C-Like Protease Inhibitor, in Japanese Patients with Mild-to-Moderate COVID-19 or Asymptomatic SARS-CoV-2 Infection: Results of the Phase 2a Part

    Get PDF
    This multicenter, double-blind, phase 2a part of a phase 2/3 study assessed the efficacy and safety of ensitrelvir, a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 3C-like protease inhibitor, in Japanese patients with mild-to-moderate coronavirus disease 2019 (COVID-19) or asymptomatic ARSCoV- 2 infection. Sixty-nine patients were randomized (1:1:1) to orally receive 5-day ensitrelvir fumaric acid (375 mg on day 1 followed by 125 mg daily, or 750 mg on day 1 followed by 250 mg daily) or placebo and followed up until day 28. The primary outcome was the change from baseline in the SARS-CoV-2 viral titer. A total of 16, 14, and 17 patients in the ensitrelvir 125 mg, ensitrelvir 250 mg, and placebo groups, respectively, were included in the intention-to-treat population (mean age: 38.0 to 40.4 years). On day 4, the change from baseline in SARS-CoV-2 viral titer (log10 50% tissue culture infectious dose/mL) in patients with positive viral titer and viral RNA at baseline was greater with ensitrelvir 125 mg (mean [standard deviation], –2.42 [1.42]; P = 0.0712) and 250 mg (–2.81 [1.21]; P = 0.0083) versus placebo (–1.54 [0.74]); ensitrelvir treatment reduced SARS-CoV-2 RNA by –1.4 to –1.5 log10 copies/ mL versus placebo. The viral titer and viral RNA were similar across groups on and after day 6. The median time to infectious viral clearance decreased by approximately 50 h with ensitrelvir treatment. All adverse events were mild to moderate. Ensitrelvir treatment demonstrated rapid SARS-CoV-2 clearance and was well tolerated (Japan Registry of Clinical Trials identifier: jRCT2031210350)

    Cryptococcus gattii Genotype VGIIa Infection in Man, Japan, 2007

    Get PDF
    We report a patient in Japan infected with Cryptococcus gattii genotype VGIIa who had no recent history of travel to disease-endemic areas. This strain was identical to the Vancouver Island outbreak strain R265. Our results suggest that this virulent strain has spread to regions outside North America

    A multicenter randomized controlled trial to evaluate the efficacy and safety of nelfinavir in patients with mild COVID-19

    Get PDF
    Nelfinavir, an orally administered inhibitor of human immunodeficiency virus protease, inhibits the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in vitro. We conducted a randomized controlled trial to evaluate the clinical efficacy and safety of nelfinavir in patients with SARS-CoV-2 infection. We included unvaccinated asymptomatic or mildly symptomatic adult patients who tested positive for SARS-CoV-2 infection within 3 days before enrollment. The patients were randomly assigned (1:1) to receive oral nelfinavir (750 mg; thrice daily for 14 days) combined with standard-of-care or standard-of-care alone. The primary endpoint was the time to viral clearance, confirmed using quantitative reverse-transcription PCR by assessors blinded to the assigned treatment. A total of 123 patients (63 in the nelfinavir group and 60 in the control group) were included. The median time to viral clearance was 8.0 (95% confidence interval [CI], 7.0 to 12.0) days in the nelfinavir group and 8.0 (95% CI, 7.0 to 10.0) days in the control group, with no significant difference between the treatment groups (hazard ratio, 0.815; 95% CI, 0.563 to 1.182; P = 0.1870). Adverse events were reported in 47 (74.6%) and 20 (33.3%) patients in the nelfinavir and control groups, respectively. The most common adverse event in the nelfinavir group was diarrhea (49.2%). Nelfinavir did not reduce the time to viral clearance in this setting. Our findings indicate that nelfinavir should not be recommended in asymptomatic or mildly symptomatic patients infected with SARS-CoV-2. The study is registered with the Japan Registry of Clinical Trials (jRCT2071200023). IMPORTANCE The anti-HIV drug nelfinavir suppresses the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in vitro. However, its efficacy in patients with COVID-19 has not been studied. We conducted a multicenter, randomized controlled trial to evaluate the efficacy and safety of orally administered nelfinavir in patients with asymptomatic or mildly symptomatic COVID-19. Compared to standard-of-care alone, nelfinavir (750 mg, thrice daily) did not reduce the time to viral clearance, viral load, or the time to resolution of symptoms. More patients had adverse events in the nelfinavir group than in the control group (74.6% [47/63 patients] versus 33.3% [20/60 patients]). Our clinical study provides evidence that nelfinavir, despite its antiviral effects on SARS-CoV-2 in vitro, should not be recommended for the treatment of patients with COVID-19 having no or mild symptoms

    Neutralization of hepatitis B virus with vaccine-escape mutations by hepatitis B vaccine with large-HBs antigen

    Get PDF
    優れたB型肝炎予防ワクチン開発に成功 --既存ワクチンの弱点克服へ--. 京都大学プレスリリース. 2022-09-07.Although the current hepatitis B (HB) vaccine comprising small-HBs antigen (Ag) is potent and safe, attenuated prophylaxis against hepatitis B virus (HBV) with vaccine-escape mutations (VEMs) has been reported. We investigate an HB vaccine consisting of large-HBsAg that overcomes the shortcomings of the current HB vaccine. Yeast-derived large-HBsAg is immunized into rhesus macaques, and the neutralizing activities of the induced antibodies are compared with those of the current HB vaccine. Although the antibodies induced by the current HB vaccine cannot prevent HBV infection with VEMs, the large-HBsAg vaccine-induced antibodies neutralize those infections. The HBV genotypes that exhibited attenuated neutralization via these vaccines are different. Here, we show that the HB vaccine consisting of large-HBsAg is useful to compensate for the shortcomings of the current HB vaccine. The combined use of these HB vaccines may induce antibodies that can neutralize HBV strains with VEMs or multiple HBV genotypes
    corecore