21 research outputs found

    Sympatric otariids increase trophic segregation in response to warming ocean conditions in Peruvian Humboldt Current System

    Get PDF
    Determining trophic habits of predator communities is essential to measure interspecific interactions and response to environmental fluctuations. South American fur seals, Arctocephalus australis (SAFS) and sea lions Otaria byronia (SASL), coexist along the coasts of Peru. Recently, ocean warming events (2014–2017) that can decrease and impoverish prey biomass have occurred in the Peruvian Humboldt Current System. In this context, our aim was to assess the effect of warming events on long-term inter- and intra-specific niche segregation. We collected whisker from SAFS (55 females and 21 males) and SASL (14 females and 22 males) in Punta San Juan, Peru. We used ή13C and ή15N values serially archived in otariid whiskers to construct a monthly time series for 2005–2019. From the same period we used sea level anomaly records to determine shifts in the predominant oceanographic conditions using a change point analysis. Ellipse areas (SIBER) estimated niche width of species-sex groups and their overlap. We detected a shift in the environmental conditions marking two distinct periods (P1: January 2005—October 2013; P2: November 2013—December 2019). Reduction in ή15N in all groups during P2 suggests impoverished baseline values with bottom-up effects, a shift towards consuming lower trophic level prey, or both. Reduced overlap between all groups in P2 lends support of a more redundant assemblage during the colder P1 to a more trophically segregated assemblage during warmer P2. SASL females show the largest variation in response to the warming scenario (P2), reducing both ellipse area and ή15N mean values. Plasticity to adapt to changing environments and feeding on a more available food source without fishing pressure can be more advantageous for female SASL, albeit temporary trophic bottom-up effects. This helps explain larger population size of SASL in Peru, in contrast to the smaller and declining SAFS population

    Biogeochemical Analysis of Ancient Pacific Cod Bone Suggests Hg Bioaccumulation was Linked to Paleo Sea Level Rise and Climate Change

    Get PDF
    Deglaciation at the end of the Pleistocene initiated major changes in ocean circulation and distribution. Within a brief geological time, large areas of land were inundated by sea-level rise and today global sea level is 120 m above its minimum stand during the last glacial maximum. This was the era of modern sea shelf formation; climate change caused coastal plain flooding and created broad continental shelves with innumerable consequences to marine and terrestrial ecosystems and human populations. In Alaska, the Bering Sea nearly doubled in size and stretches of coastline to the south were flooded, with regional variability in the timing and extent of submergence. Here we suggest how past climate change and coastal flooding are linked to mercury bioaccumulation that could have had profound impacts on past human populations and that, under conditions of continued climate warming, may have future impacts. Biogeochemical analysis of total mercury (tHg) and ÎŽ13C/ÎŽ15N ratios in the bone collagen of archeologically recovered Pacific Cod (Gadus macrocephalus) bone shows high levels of tHg during early/mid-Holocene. This pattern cannot be linked to anthropogenic activity or to food web trophic changes, but may result from natural phenomena such as increases in productivity, carbon supply and coastal flooding driven by glacial melting and sea-level rise. The coastal flooding could have led to increased methylation of Hg in newly submerged terrestrial land and vegetation. Methylmercury is bioaccumulated through aquatic food webs with attendant consequences for the health of fish and their consumers, including people. This is the first study of tHg levels in a marine species from the Gulf of Alaska to provide a time series spanning nearly the entire Holocene and we propose that past coastal flooding resulting from climate change had the potential to input significant quantities of Hg into marine food webs and subsequently to human consumers

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits - the morphological, anatomical, physiological, biochemical and phenological characteristics of plants - determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits - almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    An International Assessment of Mangrove Management: Incorporation in Integrated Coastal Zone Management

    Get PDF
    Due to increasing recognition of the benefits provided by mangrove ecosystems, protection policies have emerged under both wetland and forestry programs. However, little consistency remains among these programs and inadequate coordination exists among sectors of government. With approximately 123 countries containing mangroves, the need for global management of these ecosystems is crucial to sustain the industries (i.e., fisheries, timber, and tourism) and coastal communities that mangroves support and protect. To determine the most effective form of mangrove management, this review examines management guidelines, particularly those associated with Integrated Coastal Zone Management (ICZM). Five case studies were reviewed to further explore the fundamentals of mangrove management. The management methodologies of two developed nations as well as three developing nations were assessed to encompass comprehensive influences on mangrove management, such as socioeconomics, politics, and land-use regulations. Based on this review, successful mangrove management will require a blend of forestry, wetland, and ICZM programs in addition to the cooperation of all levels of government. Legally binding policies, particularly at the international level, will be essential to successful mangrove management, which must include the preservation of existing mangrove habitat and restoration of damaged mangroves

    Peruvian pinnipeds as archivist of ENSO effects off the coast of Peru

    No full text
    Environmental fluctuations in the eastern Pacific Ocean are reflected in the tissues of one of its most vulnerable apex predators, the Peruvian fur seal Arctocephalus australis. The coastal waters off Peru are a region of great environmental fluctuations due to periodic (every 2-7 years) El Niño-Southern Oscillation (ENSO) events, which result in ecosystem-wide food web changes. Pinniped body tissues reflect the incorporation of prey from the region, which can be evaluated using stable carbon and nitrogen isotope ratios (ÎŽ13C and ÎŽ15N). Continuously growing tissues, like vibrissae (whiskers), can potentially provide a large scale timeline of environmental data in an ecosystem where changes regularly occur and human instrumentation to measure such changes is sparse. Sea surface temperature (SST) anomalies along the Peruvian coastline are encompassed in the body of water known as Niño 1+2; a SST anomaly index used to categorize ENSO events. This region distinguishes itself from the more widely studied water bodies Niño 3, 3.4, and 4 by exhibiting more frequent and shorter-lived heating and cooling oscillations in SST. These oscillations appear to coincide with the ÎŽ13C and ÎŽ15N signatures recorded in the Peruvian fur seal vibrissae collected from 2010 (n=29), 2011 (n=12), 2012 (n=11) and 2015 (n=12). The ÎŽ13C and ÎŽ15N covary along the vibrissal length except for distinct points where their patterns are inversely related. These points are identified as transition periods between the region’s rapidly changing El Niño/La Niña phases. Adult female ÎŽ13C values throughout all sampled years (n=49), ranged from -18.13 to -13.19 ‰ ± 0.33 ‰. This reflects wide fluctuations in ocean production over time, which is our proxy to ENSO effects. Preliminary ÎŽ15N values range from 15.83 to 21.55 ‰ ± 0.85 ‰. These data suggest that these fur seals might be using alternative foraging survival strategies during these ENSO periods by foraging at two or more trophic levels. These may be the first biologic data of their kind to reveal how abiotic, ecosystem-wide changes influence the trophic dynamics and resultant survivability of the Peruvian fur seal

    Site Fidelity of Coastal Bottlenose Dolphins (Tursiops truncatus) off Southeast Florida, USA

    No full text
    The coastal bottlenose dolphin is well studied throughout its natural range, though most research focuses on wide, well-protected habitats such as bays and estuaries rather than on narrow coastal sand banks. This study identifies a residential group of coastal bottlenose dolphins utilizing the northwestern Atlantic waters off the coast of Palm Beach County, Florida. From 2014 to 2020, 313 boat surveys were conducted, and 585 individual dolphins were identified using photo-identification. Using seasonal and annual resighting ratios, 24 dolphins were considered full-time residents, 66 dolphins were considered part-time residents, and 478 dolphins were transient. The presence of individuals with high site fidelity indicates that the region is used as a permanent habitat for some individuals, while the presence of transient animals may indicate a possible bridge between populations living to the north and south of the region

    Stable Isotopes and Parasites Indicate Feeding Ecology in Florida, USA, Wading Birds

    No full text
    We assessed ÎŽ13C and ÎŽ15N profiles and endoparasite community composition in Great Egrets (Ardea alba), Great Blue Herons (A. herodias), and White Ibis (Eudocimus albus) from four wildlife rescue centers (two mainland, two on islands in the Florida Keys) in south Florida, USA to elucidate feeding ecology. We detected among-species differences for ÎŽ15N but not ÎŽ13C and noted decreased ÎŽ13C enrichment in Great Egrets and Great Blue Herons (but not White Ibis) from these centers. Parasite component community and infracommunity species richness were higher in Great Egrets and Great Blue Herons relative to White Ibis, and higher in birds of the same species from mainland centers. Multivariate analysis of parasite infracommunity structure detected co-occurring clusters of parasite taxa characteristic of Great Egrets and Great Blue Herons on the one part, and of White Ibis on the other; mainland Great Egrets and Great Blue Herons had similar parasite communities and clustered separately from conspecifics from the islands. We detected a significant (negative) correlation of infracommunity species richness with ÎŽ13C but not ÎŽ15N. Lastly, parasite infracommunity Bray-Curtis similarity correlated significantly with stable isotope Euclidean distances. We conclude that the two approaches converge towards similar outcomes, providing complementary and consilient information on host feeding ecology
    corecore