939 research outputs found

    Black hole radiation with high frequency dispersion

    Get PDF
    We consider one model of a black hole radiation, in which the equation of motion of a matter field is modified to cut off high frequency modes. The spectrum in the model has already been analytically derived in low frequency range, which has resulted in the Planckian distributin of the Hawking temperature. On the other hand, it has been numerically shown that its spectrum deviates from the thermal one in high frequency range. In this paper, we analytically derive the form of the deviation in the high frequency range. Our result can qualitatively explain the nature of the numerically calculated spectrum. The origin of the deviation is clarified by a simple discussion.Comment: 9 pages, 10 figures, submitted to Phys.Rev.

    Simulation of Acoustic Black Hole in a Laval Nozzle

    Full text link
    A numerical simulation of fluid flows in a Laval nozzle is performed to observe formations of acoustic black holes and the classical counterpart to Hawking radiation under a realistic setting of the laboratory experiment. We determined the Hawking temperature of the acoustic black hole from obtained numerical data. Some noteworthy points in analyzing the experimental data are clarified through our numerical simulation.Comment: 26 pages, published versio

    Defective Glycinergic Synaptic Transmission in Zebrafish Motility Mutants

    Get PDF
    Glycine is a major inhibitory neurotransmitter in the spinal cord and brainstem. Recently, in vivo analysis of glycinergic synaptic transmission has been pursued in zebrafish using molecular genetics. An ENU mutagenesis screen identified two behavioral mutants that are defective in glycinergic synaptic transmission. Zebrafish bandoneon (beo) mutants have a defect in glrbb, one of the duplicated glycine receptor (GlyR) Ī² subunit genes. These mutants exhibit a loss of glycinergic synaptic transmission due to a lack of synaptic aggregation of GlyRs. Due to the consequent loss of reciprocal inhibition of motor circuits between the two sides of the spinal cord, motor neurons activate simultaneously on both sides resulting in bilateral contraction of axial muscles of beo mutants, eliciting the so-called ā€˜accordionā€™ phenotype. Similar defects in GlyR subunit genes have been observed in several mammals and are the basis for human hyperekplexia/startle disease. By contrast, zebrafish shocked (sho) mutants have a defect in slc6a9, encoding GlyT1, a glycine transporter that is expressed by astroglial cells surrounding the glycinergic synapse in the hindbrain and spinal cord. GlyT1 mediates rapid uptake of glycine from the synaptic cleft, terminating synaptic transmission. In zebrafish sho mutants, there appears to be elevated extracellular glycine resulting in persistent inhibition of postsynaptic neurons and subsequent reduced motility, causing the ā€˜twitch-onceā€™ phenotype. We review current knowledge regarding zebrafish ā€˜accordionā€™ and ā€˜twitch-onceā€™ mutants, including beo and sho, and report the identification of a new Ī±2 subunit that revises the phylogeny of zebrafish GlyRs

    On the Limits of Analogy Between Self-Avoidance and Topology-Driven Swelling of Polymer Loops

    Full text link
    The work addresses the analogy between trivial knotting and excluded volume in looped polymer chains of moderate length, N<N0N<N_0, where the effects of knotting are small. A simple expression for the swelling seen in trivially knotted loops is described and shown to agree with simulation data. Contrast between this expression and the well known expression for excluded volume polymers leads to a graphical mapping of excluded volume to trivial knots, which may be useful for understanding where the analogy between the two physical forms is valid. The work also includes description of a new method for the computational generation of polymer loops via conditional probability. Although computationally intensive, this method generates loops without statistical bias, and thus is preferable to other loop generation routines in the region N<N0N<N_0.Comment: 10 pages, 5 figures, supplementary tex file and datafil

    Black hole evaporation in a heat bath as a nonequilibrium process and its final fate

    Full text link
    When a black hole evaporates, there arises a net energy flow from black hole into its outside environment (heat bath). The existence of energy flow means that the thermodynamic state of the whole system, which consists of the black hole and the heat bath, is in a nonequilibrium state. Therefore, in order to study the detail of evaporation process, the nonequilibrium effects of the energy flow should be taken into account. Using the nonequilibrium thermodynamics which has been formulated recently, this paper shows the following: (1) Time scale of black hole evaporation in a heat bath becomes shorter than that of the evaporation in an empty space (a situation without heat bath), because a nonequilibrium effect of temperature difference between the black hole and heat bath appears as a strong energy extraction from the black hole by the heat bath. (2) Consequently a huge energy burst (stronger than that of the evaporation in an empty space) arises at the end of semi-classical stage of evaporation. (3) It is suggested that a remnant of Planck size remains after the quantum stage of evaporation in order to guarantee the increase of total entropy of the whole system

    Black holes and a scalar field in an expanding universe

    Full text link
    We consider a model of an inhomogeneous universe including a massless scalar field, where the inhomogeneity is assumed to consist of many black holes. This model can be constructed by following Lindquist and Wheeler, which has already been investigated without including scalar field to show that an averaged scale factor coincides with that of the Friedmann model. In this work we construct the inhomogeneous universe with an massless scalar field, where we assume that the averaged scale factor and scalar field are given by those of the Friedmann model including a scalar field. All of our calculations are carried out in the framework of Brans-Dicke gravity. In constructing the model of an inhomogeneous universe, we define the mass of a black hole in the Brans-Dicke expanding universe which is equivalent to ADM mass if the mass evolves adiabatically, and obtain an equation relating our mass to the averaged scalar field and scale factor. As the results we find that the mass has an adiabatic time dependence in a sufficiently late stage of the expansion of the universe, and that the time dependence is qualitatively diffenrent according to the sign of the curvature of the universe: the mass increases decelerating in the closed universe case, is constant in the flat case and decreases decelerating in the open case. It is also noted that the mass in the Einstein frame depends on time. Our results that the mass has a time dependence should be retained even in the general scalar-tensor gravitiy with a scalar field potential. Furthermore, we discuss the relation of our results to the uniqueness theorem of black hole spacetime and gravitational memory effect.Comment: 16 pages, 3 tables, 5 figure

    Beyond seasonal climate: statistical estimation of phenological responses to weather

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/117250/1/eap20142471793.pd

    Beyond seasonal climate: statistical estimation of phenological responses to weather

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/117250/1/eap20142471793.pd
    • ā€¦
    corecore