When a black hole evaporates, there arises a net energy flow from black hole
into its outside environment (heat bath). The existence of energy flow means
that the thermodynamic state of the whole system, which consists of the black
hole and the heat bath, is in a nonequilibrium state. Therefore, in order to
study the detail of evaporation process, the nonequilibrium effects of the
energy flow should be taken into account. Using the nonequilibrium
thermodynamics which has been formulated recently, this paper shows the
following: (1) Time scale of black hole evaporation in a heat bath becomes
shorter than that of the evaporation in an empty space (a situation without
heat bath), because a nonequilibrium effect of temperature difference between
the black hole and heat bath appears as a strong energy extraction from the
black hole by the heat bath. (2) Consequently a huge energy burst (stronger
than that of the evaporation in an empty space) arises at the end of
semi-classical stage of evaporation. (3) It is suggested that a remnant of
Planck size remains after the quantum stage of evaporation in order to
guarantee the increase of total entropy of the whole system