14 research outputs found
Hyperglycemia in non-obese patients with type 2 diabetes is associated with low muscle mass: The Multicenter Study for Clarifying Evidence for Sarcopenia in Patients with Diabetes Mellitus
AIMS/INTRODUCTION: Hyperglycemia is a risk factor for sarcopenia when comparing individuals with and without diabetes. However, no studies have investigated whether the findings could be extrapolated to patients with diabetes with relatively higher glycemic levels. Here, we aimed to clarify whether glycemic control was associated with sarcopenia in patients with type 2 diabetes. MATERIALS AND METHODS: Study participants consisted of patients with type 2 diabetes (n = 746, the average age was 69.9 years) and an older general population (n = 2, 067, the average age was 68.2 years). Sarcopenia was defined as weak grip strength or slow usual gait speed and low skeletal mass index. RESULTS: Among patients with type 2 diabetes, 52 were diagnosed as having sarcopenia. The frequency of sarcopenia increased linearly with glycated hemoglobin (HbA1c) level, particularly in lean individuals (HbA1c <6.5%, 7.0%, ≥6.5% and <7.0%: 18.5%; HbA1c ≥7.0% and <8.0%: 20.3%; HbA1c ≥8.0%: 26.7%). The linear association was independent of major covariates, including anthropometric factors and duration of diabetes (HbA1c <6.5%: reference; ≥6.5% and <7.0%: odds ratio [OR] 4.38, P = 0.030; HbA1c ≥7.0% and <8.0%: 4.29, P = 0.024; HbA1c ≥8.0%: 7.82, P = 0.003). HbA1c level was specifically associated with low skeletal mass index (HbA1c ≥8.0%: OR 5.42, P < 0.001) rather than weak grip strength (OR 1.89, P = 0.058) or slow gait speed (OR 1.13, P = 0.672). No significant association was observed in the general population with a better glycemic profile. CONCLUSIONS: Poor glycemic control in patients with diabetes was associated with low muscle mass
Biotin-labeled Genomic DNA Probe for the Detection of Theileria sergenti and its Nucleotide Sequence
Changes in the Charged Metabolite and Sugar Profiles of Pasteurized and Unpasteurized Japanese Sake with Storage
Japanese sake (rice wine) is commonly heat treated (pasteurized)
to maintain its quality. In this study, temporal changes in the metabolite
profiles of pasteurized and unpasteurized sake were investigated during
storage. Metabolomic analyses were conducted for eight sets of pasteurized
and unpasteurized sake obtained from single process batches stored
at 8 or 20 °C for 0, 1, 2, or 4 months. Capillary electrophoresis
time-of-flight mass spectrometry and liquid chromatography tandem
mass spectrometry were used to obtain charged metabolite and sugar
profiles, respectively. The total amino acid concentration decreased
with storage, and the decrease was faster in pasteurized sake than
in unpasteurized. The organic acid concentrations were relatively
constant in both types of sake. Peptide and glucose concentrations
increased and polysaccharide concentrations decreased in unpasteurized
sake, while they were relatively constant in pasteurized sake. Rather
than stabilizing the sake metabolite profile during storage, pasteurization
results in characteristic changes compared to unpasteurized sake
Hyperglycemia in non‐obese patients with type 2 diabetes is associated with low muscle mass: The Multicenter Study for Clarifying Evidence for Sarcopenia in Patients with Diabetes Mellitus
AIMS/INTRODUCTION: Hyperglycemia is a risk factor for sarcopenia when comparing individuals with and without diabetes. However, no studies have investigated whether the findings could be extrapolated to patients with diabetes with relatively higher glycemic levels. Here, we aimed to clarify whether glycemic control was associated with sarcopenia in patients with type 2 diabetes. MATERIALS AND METHODS: Study participants consisted of patients with type 2 diabetes (n = 746, the average age was 69.9 years) and an older general population (n = 2, 067, the average age was 68.2 years). Sarcopenia was defined as weak grip strength or slow usual gait speed and low skeletal mass index. RESULTS: Among patients with type 2 diabetes, 52 were diagnosed as having sarcopenia. The frequency of sarcopenia increased linearly with glycated hemoglobin (HbA1c) level, particularly in lean individuals (HbA1c <6.5%, 7.0%, ≥6.5% and <7.0%: 18.5%; HbA1c ≥7.0% and <8.0%: 20.3%; HbA1c ≥8.0%: 26.7%). The linear association was independent of major covariates, including anthropometric factors and duration of diabetes (HbA1c <6.5%: reference; ≥6.5% and <7.0%: odds ratio [OR] 4.38, P = 0.030; HbA1c ≥7.0% and <8.0%: 4.29, P = 0.024; HbA1c ≥8.0%: 7.82, P = 0.003). HbA1c level was specifically associated with low skeletal mass index (HbA1c ≥8.0%: OR 5.42, P < 0.001) rather than weak grip strength (OR 1.89, P = 0.058) or slow gait speed (OR 1.13, P = 0.672). No significant association was observed in the general population with a better glycemic profile. CONCLUSIONS: Poor glycemic control in patients with diabetes was associated with low muscle mass