54 research outputs found

    A Retinoid X Receptor Agonist Directed to the Large Intestine Ameliorates T-Cell-Mediated Colitis in Mice

    Get PDF
    Retinoid X receptor (RXR) is a nuclear receptor that heterodimerizes with several nuclear receptors, integrating ligand-mediated signals across the heterodimers. Synthetic RXR agonists have been developed to cure certain inflammatory diseases, including inflammatory bowel diseases (IBDs). However, pre-existing RXR agonists, which are lipophilic and readily absorbed in the upper intestine, cause considerable adverse effects such as hepatomegaly, hyperlipidemia, and hypothyroidism. To minimize these adverse effects, we have developed an RXR agonist, NEt-3IB, which has lipophilic and thus poorly absorptive properties. In this study, we evaluated the effects of NEt-3IB in an experimental murine colitis model induced through the adoptive transfer of CD45RB(high)CD4(+) T cells. Pharmacokinetic studies demonstrated that the major portion of NEt-3IB was successfully delivered to the large intestine after oral administration. Notably, NEt-3IB treatment suppressed the development of T cell-mediated chronic colitis, as indicated by improvement of wasting symptoms, inflammatory infiltration, and mucosal hyperplasia. The protective effect of NEt-3IB was mediated by the suppression of IFN-gamma-producing Th1 cell expansion in the colon. In conclusion, NEt-3IB, a large intestine-directed RXR agonist, is a promising drug candidate for IBDs

    Paclitaxel and Sorafenib: The Effective Combination of Suppressing the Self-Renewal of Cancer Stem Cells

    Get PDF
    Combination therapy, which is a treatment modality combining two or more therapeutic agents, is considered a cornerstone of cancer therapy. The combination of anticancer drugs, of which functions are different from the other, enhances the efficiency compared to the monotherapy because it targets cancer cells in a synergistic or an additive manner. In this study, the combination of paclitaxel and sorafenib in low concentration was evaluated to target cancer stem cells, miPS-BT549cmP and miPS-Huh7cmP cells, developed from mouse induced pluripotent stem cells. The synergistic effect of paclitaxel and sorafenib on cancer stem cells was assessed by the inhibition of proliferation, self-renewal, colony formation, and differentiation. While the IC(50)values of paclitaxel and sorafenib were approximately ranging between 250 and 300 nM and between 6.5 and 8 mu M, respectively, IC(50)of paclitaxel reduced to 20 and 25 nM, which was not toxic in a single dose, in the presence of 1 mu M sorafenib, which was not toxic to the cells. Then, the synergistic effect was further assessed for the potential of self-renewal of cancer stem cells by sphere formation ability. As a result, 1 mu M of sorafenib significantly enhanced the effect of paclitaxel to suppress the number of spheres. Simultaneously, paclitaxel ranging in 1 to 4 nM significantly suppressed not only the colony formation but also the tube formation of the cancer stem cells in the presence of 1 mu M sorafenib. These results suggest the combination therapy of paclitaxel and sorafenib in low doses should be an attractive approach to target cancer stem cells with fewer side effects

    Competitive Binding Assay with an Umbelliferone-Based Fluorescent Rexinoid for Retinoid X Receptor Ligand Screening

    Get PDF
    Ligands for retinoid X receptors (RXRs), "rexinoids", are attracting interest as candidates for therapy of type 2 diabetes and Alzheimer's and Parkinson's diseases. However, current screening methods for rexinoids are slow and require special apparatus or facilities. Here, we created 7-hydroxy-2-oxo-6-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydronaphthalen-2-yl)-2H-chromene-3-carboxylic acid (10, CU-6PMN) as a new fluorescent RXR agonist and developed a screening system of rexinoids using 10. Compound 10 was designed based on the fact that umbelliferone emits strong fluorescence in a hydrophilic environment, but the fluorescence intensity decreases in hydrophobic environments such as the interior of proteins. The developed assay using 10 enabled screening of rexinoids to be performed easily within a few hours by monitoring changes of fluorescence intensity with widely available fluorescence microplate readers, without the need for processes such as filtration

    Strategy for tumor selective disruption of androgen receptor function in the spectrum of prostate cancer

    Get PDF
    Purpose: Testosterone suppression in prostate cancer (PC) is limited by serious side effects and resistance via restoration of androgen receptor (AR) functionality. ELK1 is required for ARdependent growth in various hormone-dependent and castration resistant PC models. The amino terminal domain of AR docks at two sites on ELK1 to co-activate essential growth genes. This study explores the ability of small molecules to disrupt the ELK1-AR interaction in the spectrum of PC, inhibiting AR activity in a manner that would predict functional tumor selectivity. Experimental design: Small molecule drug discovery and extensive biological characterization of a lead compound. Results: We have discovered a lead molecule (KCI807) that selectively disrupts ELK1-dependent promoter activation by wild-type and variant ARs without interfering with ELK1 activation by ERK. KCI807 has an obligatory flavone scaffold and functional hydroxyl groups on C5 and C3'. KCI807 binds to AR, blocking ELK1 binding, and selectively blocks recruitment of AR to chromatin by ELK1. KCI807 primarily affects a subset of AR target growth genes selectively suppressing AR-dependent growth of PC cell lines with a better inhibitory profile than enzalutamide. KCI807 also inhibits in vivo growth of castration/enzalutamide-resistant cell line-derived and patient-derived tumor xenografts. In the rodent model, KCI807 has a plasma half-life of 6h and maintenance of its antitumor effect is limited by self-induced metabolism at its 3'-hydroxyl. Conclusions: The results offer a mechanism-based therapeutic paradigm for disrupting the AR growth-promoting axis in the spectrum of prostate tumors while reducing global suppression of testosterone actions. KCI807 offers a good lead molecule for drug development

    先天性心疾患根治術前患児の全身麻酔下での歯科治療 : 2症例について

    Get PDF
    Two child patients who have congenital heart disease were treated under general anesthesia for severe dental caries in order to prevent infectious endocarditis after the heart operation. Although both the caries treatment and the subsequent heart operation of these two cases were satisfactorily completed, the necessity of early and periodical oral management for these kinds of patients was strongly suggested. The pediatric dentistry department of a general hospital should play a role in building a close cooperation system between pediatricians and the local dental practitioners for the dental welfare of child patients who are susceptible to infectious disease

    Identification of a Vitamin-D Receptor Antagonist, MeTC7, which Inhibits the Growth of Xenograft and Transgenic Tumors In Vivo

    Get PDF
    Vitamin-D receptor (VDR) mRNA is overexpressed in neuroblastoma and carcinomas of lung, pancreas, and ovaries and predicts poor prognoses. VDR antagonists may be able to inhibit tumors that overexpress VDR. However, the current antagonists are arduous to synthesize and are only partial antagonists, limiting their use. Here, we show that the VDR antagonist MeTC7 (5), which can be synthesized from 7-dehydrocholesterol (6) in two steps, inhibits VDR selectively, suppresses the viability of cancer cell-lines, and reduces the growth of the spontaneous transgenic TH-MYCN neuroblastoma and xenografts in vivo. The VDR selectivity of 5 against RXRα and PPAR-γ was confirmed, and docking studies using VDR-LBD indicated that 5 induces major changes in the binding motifs, which potentially result in VDR antagonistic effects. These data highlight the therapeutic benefits of targeting VDR for the treatment of malignancies and demonstrate the creation of selective VDR antagonists that are easy to synthesize

    Problems with Laboratory Notebooks in Academia and How to Resolve Them

    Get PDF
    There is currently a major effort to promote drug discovery in academia as a way to seed new drug development in the pharmaceutical industry. However, there are concerns in industry about the quality of drug candidates generated in academic institutions. These concerns encompass culture and perceptions with respect to intellectual property management, the process of product development, and the reliability of scientific data. Questions about data reliability underscore the particularly serious problem of mistrust in academic research. Therefore, the author became interested in the topic of industry standards for quality assurance (QA) and arranged training workshops at Okayama University on the appropriate methods for recording experimental notes by lecturers involved in QA. The outcomes are presented here

    Retinoid X Receptor Antagonists

    No full text
    Retinoid X receptor (RXR) antagonists are not only useful as chemical tools for biological research, but are also candidate drugs for the treatment of various diseases, including diabetes and allergies, although no RXR antagonist has yet been approved for clinical use. In this review, we present a brief overview of RXR structure, function, and target genes, and describe currently available RXR antagonists, their structural classification, and their evaluation, focusing on the latest research
    corecore