24 research outputs found

    Ternary complex formation between DNA-adenovirus core protein VII and TAF-IÎČ/SET, an acidic molecular chaperone

    Get PDF
    AbstractThe adenovirus (Ad) genome complexed with viral core proteins designated Ad core is the template for transcription of early genes and the first round of replication in Ad-infected cells. A cellular protein designated template-activating factor-I (TAF-I) is found to be involved in remodeling of the Ad core in vitro. Here we found that TAF-I interacts with the Ad DNA through core protein VII in infected cells in early phases of infection. In vitro binding assays using recombinant proteins showed that TAF-I forms ternary complexes with DNA–protein VII complexes

    Cellular and viral chromatin proteins are positive factors in the regulation of adenovirus gene expression

    Get PDF
    The adenovirus genome forms chromatin-like structure with viral core proteins. This complex supports only a low level of transcription in a cell-free system, and thus core proteins have been thought to be negative factors for transcription. The mechanism how the transcription from the viral DNA complexed with core proteins is activated in infected cells remains unclear. Here, we found that both core proteins and histones are bound with the viral DNA in early phases of infection. We also found that acetylation of histone H3 occurs at the promoter regions of viral active genes in a transcription-independent manner. In addition, when a plasmid DNA complexed with core proteins was introduced into cells, core proteins enhanced transcription. Knockdown of TAF-I, a remodeling factor for viral core protein–DNA complexes, reduces the enhancement effect by core proteins, indicating that core proteins positively regulate viral transcription through the interaction with TAF-I. We would propose a possible mechanism that core proteins ensure transcription by regulating viral chromatin structure through the interaction with TAF-I

    Exploiting Ligand-Protein Conjugates to Monitor Ligand-Receptor Interactions

    Get PDF
    We introduce three assays for analyzing ligand-receptor interactions based on the specific conjugation of ligands to SNAP-tag fusion proteins. Conjugation of ligands to different SNAP-tag fusions permits the validation of suspected interactions in cell extracts and fixed cells as well as the establishment of high-throughput assays. The different assays allow the analysis of strong and weak interactions. Conversion of ligands into SNAP-tag substrates thus provides access to a powerful toolbox for the analysis of their interactions with proteins

    The anchor-away technique: rapid, conditional establishment of yeast mutant phenotypes

    No full text
    The anchor-away (AA) technique depletes the nucleus of Saccharomyces cerevisiae of a protein of interest (the target) by conditional tethering to an abundant cytoplasmic protein (the anchor) by appropriate gene tagging and rapamycin-dependent heterodimerization. Taking advantage of the massive flow of ribosomal proteins through the nucleus during maturation, a protein of the large subunit was chosen as the anchor. Addition of rapamycin, due to formation of the ternary complex, composed of the anchor, rapamycin, and the target, then results in the rapid depletion of the target from the nucleus. All 43 tested genes displayed on rapamycin plates the expected defective growth phenotype. In addition, when examined functionally, specific mutant phenotypes were obtained within minutes. These are genes involved in protein import, RNA export, transcription, sister chromatid cohesion, and gene silencing. The AA technique is a powerful tool for nuclear biology to dissect the function of individual or gene pairs in synthetic, lethal situations

    Novel Oxidative Ring Opening Reaction of 1H-Isotelluro-chromenes to Bis(o-formylstyryl) Ditellurides

    No full text
    The oxidation of 1-unsubstituted or 1-phenyl-1H-isotellurochromenes with m-chloroperbenzoic acid (mCPBA) in CHCl3 resulted in a ring opening reaction to produce as the sole products the corresponding o-formyl or benzoyl distyryl ditellurides, which were also produced by the hydrolysis of the 2-benzotelluropyrylium salts readily prepared from the parent isotellurochromene

    Tetrahydrobiopterin Biosynthesis as a Potential Target of the Kynurenine Pathway Metabolite Xanthurenic Acid

    No full text
    Tryptophan metabolites in the kynurenine pathway are up-regulated by pro-inflammatory cytokines or glucocorticoids, and are linked to anti-inflammatory and immunosuppressive activities. In addition, they are up-regulated in pathologies such as cancer, autoimmune diseases, and psychiatric disorders. The molecular mechanisms of how kynurenine pathway metabolites cause these effects are incompletely understood. On the other hand, pro-inflammatory cytokines also up-regulate the amounts of tetrahydrobiopterin (BH4), an enzyme cofactor essential for the synthesis of several neurotransmitter and nitric oxide species. Here we show that xanthurenic acid is a potent inhibitor of sepiapterin reductase (SPR), the final enzyme in de novo BH4 synthesis. The crystal structure of xanthurenic acid bound to the active site of SPR reveals why among all kynurenine pathway metabolites xanthurenic acid is the most potent SPR inhibitor. Our findings suggest that increased xanthurenic acid levels resulting from up-regulation of the kynurenine pathway could attenuate BH4 biosynthesis and BH4-dependent enzymatic reactions, linking two major metabolic pathways known to be highly up-regulated in inflammation
    corecore