62 research outputs found

    Bilateral Optic Neuritis and Hypophysitis With Diabetes Insipidus 1 Month After COVID-19 mRNA Vaccine: Case Report and Literature Review

    Get PDF
    Either optic neuritis (neuropathy) or hypopituitarism has been known to occur separately after COVID-19 vaccination. In this report, we describe the rare combination of hypophysitis and optic neuritis which occurred after COVID-19 vaccination. A 74-year-old woman began to have thirst, polydipsia, and polyuria, and was diagnosed as central diabetes insipidus 1 month after the fourth COVID-19 mRNA vaccine. Head magnetic resonance imaging (MRI) disclosed the thickened pituitary stalk and enlarged pituitary gland with high contrast enhancement as well as the absence of high-intensity signals in the posterior pituitary lobe on the T1-weighted image, leading to the diagnosis of lymphocytic hypophysitis. She was well with desmopressin nasal spray until further 2 months later, when she developed bilateral optic neuritis, together with gait disturbance, intention tremor of the upper extremities, urinary retention, constipation, abnormal sensation in the distal part of the lower extremities, and moderate hemiplegia on the left side. Autoantibodies, including anti-aquaporin 4 (AQP4) and anti-myelin oligodendrocyte glycoprotein (MOG), were all negative. She showed multifocal spinal cord lesions on MRI and oligoclonal bands in the cerebrospinal fluid obtained by spinal tap, and so underwent steroid pulse therapy with methylprednisolone in the tentative diagnosis of multiple sclerosis, resulting in visual acuity recovery and alleviation of neurological symptoms. In the literature review, the combination of optic neuritis and hypophysitis, mostly with diabetes insipidus, was reported in 15 patients as case reports before the years of COVID-19 pandemic. The COVID-19 vaccination would trigger the onset of hypophysitis and optic neuritis in this patient

    Involvement of resistin-like molecule β in the development of methionine-choline deficient diet-induced non-alcoholic steatohepatitis in mice

    Get PDF
    Resistin-like molecule β (RELMβ) reportedly has multiple functions including local immune responses in the gut. In this study, we investigated the possible contribution of RELMβ to non-alcoholic steatohepatitis (NASH) development. First, RELMβ knock-out (KO) mice were shown to be resistant to methionine-choline deficient (MCD) diet-induced NASH development. Since it was newly revealed that Kupffer cells in the liver express RELMβ and that RELMβ expression levels in the colon and the numbers of RELMβ-positive Kupffer cells were both increased in this model, we carried out further experiments using radiation chimeras between wild-type and RELMβ-KO mice to distinguish between the contributions of RELMβ in these two organs. These experiments revealed the requirement of RELMβ in both organs for full manifestation of NASH, while deletion of each one alone attenuated the development of NASH with reduced serum lipopolysaccharide (LPS) levels. The higher proportion of lactic acid bacteria in the gut microbiota of RELMβ-KO than in that of wild-type mice may be one of the mechanisms underlying the lower serum LPS level the former. These data suggest the contribution of increases in RELMβ in the gut and Kupffer cells to NASH development, raising the possibility of RELMβ being a novel therapeutic target for NASH

    Orchestrated ensemble activities constitute a hippocampal memory engram

    Get PDF
    The brain stores and recalls memories through a set of neurons, termed engram cells. However, it is unclear how these cells are organized to constitute a corresponding memory trace. We established a unique imaging system that combines Ca2+ imaging and engram identification to extract the characteristics of engram activity by visualizing and discriminating between engram and non-engram cells. Here, we show that engram cells detected in the hippocampus display higher repetitive activity than non-engram cells during novel context learning. The total activity pattern of the engram cells during learning is stable across post-learning memory processing. Within a single engram population, we detected several sub-ensembles composed of neurons collectively activated during learning. Some sub-ensembles preferentially reappear during post-learning sleep, and these replayed sub-ensembles are more likely to be reactivated during retrieval. These results indicate that sub-ensembles represent distinct pieces of information, which are then orchestrated to constitute an entire memory

    Aldosterone breakthrough caused by chronic blockage of angiotensin II type 1 receptors in human adrenocortical cells: Possible involvement of bone morphogenetic protein-6 actions

    Get PDF
    Circulating aldosterone concentrations occasionally increase after initial suppression with angiotensin II (Ang II) converting enzyme inhibitors or Ang II type 1 receptor blockers (ARBs), a phenomenon referred to as aldosterone breakthrough. However, the underlying mechanism causing the aldosterone breakthrough remains unknown. Here we investigated whether aldosterone breakthrough occurs in human adrenocortical H295R cells in vitro. We recently reported that bone morphogenetic protein (BMP)-6, which is expressed in adrenocortical cells, enhances Ang II-but not potassium-induced aldosterone production in human adrenocortical cells. Accordingly, we examined the roles of BMP-6 in aldosterone breakthrough induced by long-term treatment with ARB. Ang II stimulated aldosterone production by adrenocortical cells. This Ang II stimulation was blocked by an ARB, candesartan. Interestingly, the candesartan effects on Ang II-induced aldosterone synthesis and CYP11B2 expression were attenuated in a course of candesartan treatment for 15 d. The impairment of candesartan effects on Ang II-induced aldosterone production was also observed in Ang II- or candesartanpretreated cells. Levels of Ang II type 1 receptor mRNA were not changed by chronic candesartan treatment. However, BMP-6 enhancement of Ang II- induced ERK1/2 signaling was resistant to candesartan. The BMP-6-induced Smad1, -5, and -8 phosphorylation, and BRE-Luc activity was augmented in the presence of Ang II and candesartan in the chronic phase. Chronic Ang II exposure decreased cellular expression levels of BMP-6 and its receptors activin receptor-like kinase-2 and activin type II receptor mRNAs. Cotreatment with candesartan reversed the inhibitory effects of Ang II on the expression levels of these mRNAs. The breakthrough phenomenon was attenuated by neutralization of endogenous BMP-6 and activin receptor-like kinase-2. Collectively, these data suggest that changes in BMP-6 availability and response may be involved in the occurrence of cellular escape from aldosterone suppression under chronic treatment with ARB.</p

    &quot;Asia Geothermal Database&quot; as a DCGM-4 Project of CCOP

    No full text
    ABSTRACT The Coordinating Committee for Coastal and Offshore Geoscience Programmes in East and Southeast Asia (CCOP) devotes to coordination and cooperation in scientific activity related to coastal and offshore geological and geophysical surveys, regional map compilation, database construction, human resources development and technology transfer. Activity of CCOP covers four sectors: energy, mineral resources, coastal zone management and geohazards. In East-Southeast Asia, demands of energy are increasing, and establishment of clean energy infrastructure in the region is needed for preservation of global environments. Fortunately, East-Southeast Asia is in the Circum-Pacific and Himalayan continental collision volcanic zones, and has potential of geothermal energy, which is one of clean energies, available to local electrical power supply and direct use

    Methyl halides in surface seawater and marine boundary layer of the northwest Pacific

    Get PDF
    The partial pressures of methyl halides (CH3X; X = Cl, Br, or I) and of CHClF2 (HCFC‐22), which are all volatile organic compounds (VOCs), were measured in the air of the marine boundary layer (pVOCair) and in surface seawater (pVOCwater) during a cruise from the subarctic to subtropical regions of the northwest Pacific in summer of 2008. In the northern transition water (TWN) with high biological activity, high levels of the three CH3Xs in surface seawater were frequently observed, probably owing to their enhanced production by phytoplankton. Supersaturation of CH3Br was only present in TWN water, with a saturation anomaly (SCH3Br) of 0.95 [SCH3X = (pCH3Xwater − pCH3Xair)/pCH3Xair]. The highest saturation anomalies for CH3Cl (SCH3Cl = 1.6) and CH3I (SCH3I = 91) were found in the southern subtropical water (STS) with low biological production south of the subtropical front. We found that the molar concentrations of CH3Cl (CCH3Cl) and CH3I (CCH3I) sharply increased with increasing sea surface temperature (SST) in the subtropical waters. The maximum CCH3Cl (144 pmol l−1) was present in STS water at SST = 30°C and is 1.5 times the value extrapolated from the previously reported relationship between CCH3Cl and SST. Photochemical production might have contributed to the production of CH3Cl and CH3I in STS water
    corecore