194 research outputs found

    Soft Supersymmetry Breaking at Heavy Chiral Threshold

    Get PDF
    We discuss the structure of threshold corrections to soft supersymmetry-breaking parameters at the mass threshold of heavy chiral superfields. Nontrivial dependence on soft parameters of heavy matter fields originates from the `physical' definition of the threshold scale, at which the general form of soft supersymmetry breaking is derived in the superfield coupling formalism.Comment: 7 pages, no figur

    SAFETY EVALUATION OF BICYCLE DIRECTION CONTROL SYSTEM AT SMALL JUNCTIONS USING DRIVING SIMULATOR EXPERIMENTS

    Get PDF
    自転車事故は全事故の2割を占め,その約5割が無信号交差点で発生し,自動車と自転車が交差する出会い頭事故がそのうちの6割を占める.既存研究によると,無信号交差点での自動車の直進・左折時には左側からの自転車との事故割合が高いが,右折時には右側からの自転車との割合が高くなることが分かっている.その原因として,ドライバーにとって両方向から現れる自転車への注視が困難であることが考えられる.本研究では,細街路交差点において両側通行の危険性を明らかにすることを目的とした.ドライビングシミュレータを用いて自転車との出会い頭事故を再現した実験により,両側通行を認めるパターンで2台の自転車が出現する場合,左側通行のみの2台の自転車が出現する場合に比べて,TTC,危険感などで安全性に劣ることが明らかになった.The ratio of bicycles accidents at small junctions in Japan is about 50%, and 60% of them are crossing accidents. According to the previous studies, a large part of left turning and straight crossing accidents is the crash with bicycles running right side of roads, but a large part of right turning accidents is the crash with bicycles running left side. The reason of the phenomena is considered that the regularization that bicycles run in both direction almost of small junctions in Japan. The aim of study is to evaluate the danger of bicycle direction control system which permits the both way cycling at small junctions. By employing the virtual experiment of crossing accidents using driving simulator, the effects on the safety are found from the viewpoints of drivers sense and TTC index. by the direction control of left side cycling compared with both way cycling system

    DNA Lesions Induced by Replication Stress Trigger Mitotic Aberration and Tetraploidy Development

    Get PDF
    During tumorigenesis, cells acquire immortality in association with the development of genomic instability. However, it is still elusive how genomic instability spontaneously generates during the process of tumorigenesis. Here, we show that precancerous DNA lesions induced by oncogene acceleration, which induce situations identical to the initial stages of cancer development, trigger tetraploidy/aneuploidy generation in association with mitotic aberration. Although oncogene acceleration primarily induces DNA replication stress and the resulting lesions in the S phase, these lesions are carried over into the M phase and cause cytokinesis failure and genomic instability. Unlike directly induced DNA double-strand breaks, DNA replication stress-associated lesions are cryptogenic and pass through cell-cycle checkpoints due to limited and ineffective activation of checkpoint factors. Furthermore, since damaged M-phase cells still progress in mitotic steps, these cells result in chromosomal mis-segregation, cytokinesis failure and the resulting tetraploidy generation. Thus, our results reveal a process of genomic instability generation triggered by precancerous DNA replication stress

    A bimodal catalytic membrane having a hydrogen-permselective silica layer on a bimodal catalytic support: Preparation and application to the steam reforming of methane

    Get PDF
    The steam reforming of methane for hydrogen production was experimentally investigated using catalytic membrane reactors, consisting of a microporous silica top layer, for the selective permeation of hydrogen, and an α-alumina support layer, for catalytic reaction of the steam reforming of methane. An α-alumina support layer with a bimodal structure, which was proposed for the enhanced dispersion of Ni catalysts, was prepared by impregnating γ-Al2O3 inside α-Al2O3 microfiltration membranes (1 μm in pore diameter), and then immersing the membranes in a nickel nitrate solution, resulting in a bimodal catalytic support. The bimodal catalytic support showed a large conversion of methane at a high space velocity compared with a conventional catalytic membrane with a monomodal structure. The enhanced activity of Ni-catalysts in bimodal catalytic supports was confirmed by hydrogen adsorption measurements. A bimodal catalytic membrane, i. e., a silica membrane coated on a bimodal catalytic support, showing an approximate selectivity of hydrogen over nitrogen of 100 with a hydrogen permeance of 0.5-1x10-5 m3 m-2 s-1 kPa-1 was examined for the steam reforming of methane. The reaction was carried out at 500 °C, and the feed and permeate pressures were maintained at 100 and 20 kPa, respectively. Methane conversion could be increased up to approximately 0.7 beyond the equilibrium conversion of 0.44 by extracting hydrogen from the reaction stream to the permeate stream

    The use of uniaxial accelerometry for the assessment of physical-activity-related energy expenditure: a validation study against whole-body indirect calorimetry

    Get PDF
    Assessing the total energy expenditure (TEE) and the levels of physical activity in free-living conditions with non-invasive techniques remains a challenge. The purpose of the present study was to investigate the accuracy of a new uniaxial accelerometer for assessing TEE and physical-activity-related energy expenditure (PAEE) over a 24 h period in a respiratory chamber, and to establish activity levels based on the accelerometry ranges corresponding to the operationally defined metabolic equivalent (MET) categories. In study 1, measurement of the 24 h energy expenditure of seventy-nine Japanese subjects (40 (SD 12) years old) was performed in a large respiratory chamber. During the measurements, the subjects wore a uniaxial accelerometer (Lifecorder; Suzuken Co. Ltd, Nagoya, Japan) on their belt. Two moderate walking exercises of 30 min each were performed on a horizontal treadmill. In study 2, ten male subjects walked at six different speeds and ran at three different speeds on a treadmill for 4 min, with the same accelerometer. O2 consumption was measured during the last minute of each stage and was expressed in MET. The measured TEE was 8447 (SD 1337) kJ/d. The accelerometer significantly underestimated TEE and PAEE (91·9 (SD 5·4) and 92·7 (SD 17·8) % chamber value respectively); however, there was a significant correlation between the two values (r 0·928 and 0·564 respectively; P<0·001). There was a strong correlation between the activity levels and the measured MET while walking (r2 0·93; P<0·001). Although TEE and PAEE were systematically underestimated during the 24 h period, the accelerometer assessed energy expenditure well during both the exercise period and the non-structured activities. Individual calibration factors may help to improve the accuracy of TEE estimation, but the average calibration factor for the group is probably sufficient for epidemiological research. This method is also important for assessing the diurnal profile of physical activit

    The Hypervariable Region 1 Protein of Hepatitis C Virus Broadly Reactive with Sera of Patients with Chronic Hepatitis C Has a Similar Amino Acid Sequence with the Consensus Sequence

    Get PDF
    AbstractHypervariable region 1 (HVR1) proteins of hepatitis C virus (HCV) have been reported to react broadly with sera of patients with HCV infection. However, the variability of the broad reactivity of individual HVR1 proteins has not been elucidated. We assessed the reactivity of 25 different HVR1 proteins (genotype 1b) with sera of 81 patients with HCV infection (genotype 1b) by Western blot. HVR1 proteins reacted with 2–60 sera. The number of sera reactive with each HVR1 protein significantly correlated with the number of amino acid residues identical to the consensus sequence defined by Puntoriero et al. (G. Puntoriero, A. Lahm, S. Zucchelli, B. B. Ercole, R. Tafi, M. Penzzanera, M. U. Mondelli, R. Cortese, A. Tramontano, G. Galfre', and A. Nicosia. 1998. EMBO J. 17, 3521–3533.) (r = 0.561, P < 0.005). The most widely reactive HVR1 protein, 12-22, had a sequence similar to the consensus sequence. The peptide with C-terminal 13-amino-acids sequence of HVR1 protein 12-22 (NH2-CSFTSLFTPGPSQK) was injected into rabbits as an immunogen. The rabbit immune sera reacted with 9 of 25 HVR1 proteins of genotype 1b including HVR1 protein 12-22 and with 3 of 12 proteins of genotype 2a. These results indicate that the HVR1 protein broadly reactive with patients' sera has a sequence similar to the consensus sequence, can induce broadly reactive sera, and could be one of the candidate immunogens in a prophylactic vaccine against HCV

    Catecholamines Facilitate Fuel Expenditure and Protect Against Obesity via a Novel Network of the Gut-Brain Axis in Transcription Factor Skn-1-deficient Mice

    Get PDF
    AbstractTaste signals and nutrient stimuli sensed by the gastrointestinal tract are transmitted to the brain to regulate feeding behavior and energy homeostasis. This system is referred to as the gut-brain axis. Here we show that both brush cells and type II taste cells are eliminated in the gastrointestinal tract of transcription factor Skn-1 knockout (KO) mice. Despite unaltered food intake, Skn-1 KO mice have reduced body weight with lower body fat due to increased energy expenditure. In this model, 24-h urinary excretion of catecholamines was significantly elevated, accompanied by increased fatty acid β-oxidation and fuel dissipation in skeletal muscle and impaired insulin secretion driven by glucose. These results suggest the existence of brain-mediated energy homeostatic pathways originating from brush cells and type II taste cells in the gastrointestinal tract and ending in peripheral tissues, including the adrenal glands. The discovery of food-derived factors that regulate these cells may open new avenues the treatment of obesity and diabetes.Research ContextTaste signals and nutrient stimuli sensed by the gastrointestinal tract are transmitted to the brain to regulate feeding behavior and energy homeostasis along the gut-brain axis. We propose the concept that taste-receiving cells in the oral cavity and/or food-borne chemicals-receiving brush cells in the gut are involved in regulation of the body weight and adiposity via the brain. The discovery of food-derived factors that regulate these cells may open new avenues for the treatment of obesity and diabetes
    corecore