35 research outputs found

    EVALUATION OF CYTOTOXIC ACTIVITY OF ETHYL ACETATE EXTRACT OF PIGMENT FROM PSEUDOMONAS AERUGINOSA

    Get PDF
    Objective: Bacterial pigments have promising applications in food, cosmetics, textile, and therapeutics. Pigments from microbial origin are stable, safer, cost effective, easy production, and extraction and thus preferred over other natural sources. Under this backdrop, isolation and characterization of pigment-producing bacteria and analysis of bioactivity of the pigment were the aim of the study. From the literature studies, the pigment production was found to be influenced by various physical factors which directed the study toward optimization of physical parameters for pigment production. Methods: Isolation of pigment-producing bacteria from water sample, cultural, and microscopic identification was done as per the standard protocol. Extraction of pigment by solvent extraction was carried out and its antibacterial and cytotoxic activity was assayed. Results: Molecular characterization of the bacteria resembled the query sequence of the isolate to 99% with Pseudomonas aeruginosa strain. Extraction of pigment by solvent extraction method resulted in crude pigment extract with antibacterial activity against Gram-negative bacteria (17 mm zone of inhibition) at 100 μg/ml concentration. Pigment showed dose-dependent inhibition on proliferation of HeLa cells at the concentration of 345.83 μg/mL. Conclusion: From the above results, it was evident that the pigment extracted from the bacterial isolate Pseudomonas aeruginosa strain JBT18N was therapeutically potential

    Validation of the use of Actigraph GT3X accelerometers to estimate energy expenditure in full time manual wheel chair users with Spinal Cord Injury

    Full text link
    Study design: Cross-sectional validation study. Objectives: The goals of this study were to validate the use of accelerometers by means of multiple linear models (MLMs) to estimate the O2 consumption (VO2) in paraplegic persons and to determine the best placement for accelerometers on the human body. Setting: Non-hospitalized paraplegics’ community. Methods: Twenty participants (age=40.03 years, weight=75.8 kg and height=1.76 m) completed sedentary, propulsion and housework activities for 10 min each. A portable gas analyzer was used to record VO2. Additionally, four accelerometers (placed on the non-dominant chest, non-dominant waist and both wrists) were used to collect second-by-second acceleration signals. Minute-by-minute VO2 (ml kg−1 min−1) collected from minutes 4 to 7 was used as the dependent variable. Thirty-six features extracted from the acceleration signals were used as independent variables. These variables were, for each axis including the resultant vector, the percentiles 10th, 25th, 50th, 75th and 90th; the autocorrelation with lag of 1 s and three variables extracted from wavelet analysis. The independent variables that were determined to be statistically significant using the forward stepwise method were subsequently analyzed using MLMs. Results: The model obtained for the non-dominant wrist was the most accurate (VO2=4.0558−0.0318Y25+0.0107Y90+0.0051YND2−0.0061ZND2+0.0357VR50) with an r-value of 0.86 and a root mean square error of 2.23 ml kg−1 min−1. Conclusions: The use of MLMs is appropriate to estimate VO2 by accelerometer data in paraplegic persons. The model obtained to the non-dominant wrist accelerometer (best placement) data improves the previous models for this population.LM Garcia-Raffi and EA Sanchez-Perez gratefully acknowledge the support of the Ministerio de Economia y Competitividad under project #MTM2012-36740-c02-02. X Garcia-Masso is a Vali + D researcher in training with support from the Generalitat Valenciana.Garcia Masso, X.; Serra Añó, P.; García Raffi, LM.; Sánchez Pérez, EA.; Lopez Pascual, J.; González, L. (2013). Validation of the use of Actigraph GT3X accelerometers to estimate energy expenditure in full time manual wheel chair users with Spinal Cord Injury. Spinal Cord. 51(12):898-903. https://doi.org/10.1038/sc.2013.85S8989035112Van den Berg-Emons RJ, Bussmann JB, Haisma JA, Sluis TA, van der Woude LH, Bergen MP et al. A prospective study on physical activity levels after spinal cord injury during inpatient rehabilitation and the year after discharge. Arch Phys Med Rehabil 2008; 89: 2094–2101.Jacobs PL, Nash MS . Exercise recommendations for individuals with spinal cord injury. Sports Med 2004; 34: 727–751.Erikssen G . Physical fitness and changes in mortality: the survival of the fittest. Sports Med 2001; 31: 571–576.Warburton DER, Nicol CW, Bredin SSD . Health benefits of physical activity: the evidence. CMAJ 2006; 174: 801–809.Haennel RG, Lemire F . Physical activity to prevent cardiovascular disease. How much is enough? Can Fam Physician 2002; 48: 65–71.Manns PJ, Chad KE . Determining the relation between quality of life, handicap, fitness, and physical activity for persons with spinal cord injury. Arch Phys Med Rehabil 1999; 80: 1566–1571.Hetz SP, Latimer AE, Buchholz AC, Martin Ginis KA . Increased participation in activities of daily living is associated with lower cholesterol levels in people with spinal cord injury. Arch Phys Med Rehabil 2009; 90: 1755–1759.Buchholz AC, Martin Ginis KA, Bray SR, Craven BC, Hicks AL, Hayes KC et al. Greater daily leisure time physical activity is associated with lower chronic disease risk in adults with spinal cord injury. Appl Physiol Nutr Metab 2009; 34: 640–647.Slater D, Meade MA . Participation in recreation and sports for persons with spinal cord injury: review and recommendations. Neurorehabilitation 2004; 19: 121–129.Valanou EM, Bamia C, Trichopoulou A . Methodology of physical-activity and energy-expenditure assessment: a review. J Public Health 2006; 14: 58–65.Liu S, Gao RX, Freedson PS . Computational methods for estimating energy expenditure in human physical activities. Med Sci Sports Exerc 2012; 44: 2138–2146.Troiano RP, Berrigan D, Dodd KW, Mâsse LC, Tilert T, McDowell M . Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc 2008; 40: 181–188.Riddoch CJ, Bo Andersen L, Wedderkopp N, Harro M, Klasson-Heggebø L, Sardinha LB et al. Physical activity levels and patterns of 9- and 15-yr-old European children. Med Sci Sports Exerc 2004; 36: 86–92.Hiremath SV, Ding D . Evaluation of activity monitors in manual wheelchair users with paraplegia. J Spinal Cord Med 2011; 34: 110–117.Hiremath SV, Ding D . Evaluation of activity monitors to estimate energy expenditure in manual wheelchair users. Conf Proc IEEE Eng Med Biol Soc 2009; 2009: 835–838.Washburn R, Copay A . Assessing physical activity during wheelchair pushing: validity of a portable accelerometer. Adapt Phys Activ Q 1999; 16: 290–299.Hiremath SV, Ding D . Regression equations for RT3 activity monitors to estimate energy expenditure in manual wheelchair users. Conf Proc IEEE Eng Med Biol Soc 2011; 2011: 7348–7351.Hiremath SV, Ding D, Farringdon J, Cooper RA . Predicting energy expenditure of manual wheelchair users with spinal cord injury using a multisensor-based activity monitor. Arch Phys Med Rehabil 2012; 93: 1937–1943.Bassett DR Jr, Ainsworth BE, Swartz AM, Strath SJ, O’Brien WL, King GA . Validity of four motion sensors in measuring moderate intensity physical activity. Med Sci Sports Exerc 2000; 32: S471–S480.Motl RW, Sosnoff JJ, Dlugonski D, Suh Y, Goldman M . Does a waist-worn accelerometer capture intra- and inter-person variation in walking behavior among persons with multiple sclerosis? Med Eng Phys 2010; 32: 1224–1228.Van Remoortel H, Raste Y, Louvaris Z, Giavedoni S, Burtin C, Langer D et al. Validity of six activity monitors in chronic obstructive pulmonary disease: a comparison with indirect calorimetry. PLoS One 2012; 7: e39198.Macfarlane DJ . Automated metabolic gas analysis systems: a review. Sports Med 2001; 31: 841–861.Staudenmayer J, Pober D, Crouter S, Bassett D, Freedson P . An artificial neural network to estimate physical activity energy expenditure and identify physical activity type from an accelerometer. J Appl Physiol 2009; 107: 1300–1307.Daubechies I . Ten Lectures on Wavelets. SIAM, Philadelphia. 1999.Debnat I . Wavelets and Signal Processing. Birkhauser, Boston. 2003.Collins EG, Gater D, Kiratli J, Butler J, Hanson K, Langbein WE . Energy cost of physical activities in persons with spinal cord injury. Med Sci Sports Exerc 2010; 42: 691–700.Lee M, Zhu W, Hedrick B, Fernhall B . Determining metabolic equivalent values of physical activities for persons with paraplegia. Disabil Rehabil 2010; 32: 336–343.Crouter SE, Clowers KG, Bassett DR Jr . A novel method for using accelerometer data to predict energy expenditure. J Appl Physiol 2006; 100: 1324–1331

    The conundrum of iron in multiple sclerosis – time for an individualised approach

    Full text link

    A genome-scale integrated approach aids in genetic dissection of complex flowering time trait in chickpea

    Get PDF
    A combinatorial approach of candidate gene-based association analysis and genome-wide association study (GWAS) integrated with QTL mapping, differential gene expression profiling and molecular haplotyping was deployed in the present study for quantitative dissection of complex flowering time trait in chickpea. Candidate gene-based association mapping in a flowering time association panel (92 diverse desi and kabuli accessions) was performed by employing the genotyping information of 5724 SNPs discovered from 82 known flowering chickpea gene orthologs of Arabidopsis and legumes as well as 832 gene-encoding transcripts that are differentially expressed during flower development in chickpea. GWAS using both genome-wide GBS- and candidate gene-based genotyping data of 30,129 SNPs in a structured population of 92 sequenced accessions (with 200–250 kb LD decay) detected eight maximum effect genomic SNP loci (genes) associated (34 % combined PVE) with flowering time. Six flowering time-associated major genomic loci harbouring five robust QTLs mapped on a high-resolution intra-specific genetic linkage map were validated (11.6–27.3 % PVE at 5.4–11.7 LOD) further by traditional QTL mapping. The flower-specific expression, including differential up- and down-regulation (>three folds) of eight flowering time-associated genes (including six genes validated by QTL mapping) especially in early flowering than late flowering contrasting chickpea accessions/mapping individuals during flower development was evident. The gene haplotype-based LD mapping discovered diverse novel natural allelic variants and haplotypes in eight genes with high trait association potential (41 % combined PVE) for flowering time differentiation in cultivated and wild chickpea. Taken together, eight potential known/candidate flowering time-regulating genes [efl1 (early flowering 1), FLD (Flowering locus D), GI (GIGANTEA), Myb (Myeloblastosis), SFH3 (SEC14-like 3), bZIP (basic-leucine zipper), bHLH (basic helix-loop-helix) and SBP (SQUAMOSA promoter binding protein)], including novel markers, QTLs, alleles and haplotypes delineated by aforesaid genome-wide integrated approach have potential for marker-assisted genetic improvement and unravelling the domestication pattern of flowering time in chickpea

    Evaluation of activity monitors to estimate energy expenditure in manual wheelchair users

    No full text
    In an effort to make activity monitors usable by manual wheelchair users with Spinal Cord Injury (SCI), our study examines the validity of SenseWear® Armband (SenseWear) and RT3 in assessing energy expenditure (EE) during wheelchair related activities. This paper presents the data obtained from six subjects (n=6) with SCI performing three activities, including wheelchair propulsion, armergometer exercise and deskwork. The analysis presented here compares the EE estimated from the SenseWear and the RT3 with respect to the EE measured from a portable metabolic cart. It was found that the SenseWear overestimated EE for resting (+5.78%), wheelchair propulsion (+88.20%, +46.20%, and +138.21% for the three trials at different intensities, respectively), arm-ergometer exercise (+55.05%, +26.91%, and +39.17% for the three trials at different intensities, respectively) and deskwork (+13.11%). The results also indicate that RT3 underestimated EE for resting (-3.06%), wheelchair propulsion (-24.23%, -19.42%, and -9.98% for the three trials at different intensities, respectively), arm-ergometer exercise (-49.06%, -53.69% and -52.08 for the three trials at different intensities, respectively) and measured EE relatively accurate for deskwork. Good and moderate Intraclass correlations were found between EE measured by metabolic cart and EE estimated by SenseWear (0.787, p<0.0001) and RT3 (0.705, p<0.0001). Weka, machine learning software, was used to select attributes and model EE equations for the SenseWear and the RT3. Excellent and good Intraclass correlations were found between the EE measured by the metabolic cart and the estimated EE based on the models for SenseWear (0.944, p<0.0001) and RT3 (0.821, p<0.0001). Future work will test more subjects to refine the model and provide manual wheelchair users with a valid tool to gauge their daily physical activity and EE. ©2009 IEEE

    Predicting energy expenditure of manual wheelchair users with spinal cord injury using a multisensor-based activity monitor

    No full text
    Objective: To develop and evaluate new energy expenditure (EE) prediction models for manual wheelchair users (MWUs) with spinal cord injury (SCI) based on a commercially available multisensor-based activity monitor. Design: Cross-sectional. Setting: Laboratory. Participants: Volunteer sample of MWUs with SCI (N=45). Intervention: Subjects were asked to perform 4 activities including resting, wheelchair propulsion, arm-ergometer exercise, and deskwork. Criterion EE using a metabolic cart and raw sensor data from a multisensor activity monitor was collected during each of these activities. Main Outcome Measures: Two new EE prediction models including a general model and an activity-specific model were developed using enhanced all-possible regressions on 36 MWUs and tested on the remaining 9 MWUs. Results: The activity-specific and general EE prediction models estimated the EE significantly better than the manufacturer's model. The average EE estimation error using the manufacturer's model and the new general and activity-specific models for all activities combined was -55.31% (overestimation), 2.30% (underestimation), and 4.85%, respectively. The average EE estimation error using the manufacturer's model, the new general model, and activity-specific models for various activities varied from -19.10% to -89.85%, -18.13% to 25.13%, and -4.31% to 9.93%, respectively. Conclusions: The predictors for the new models were based on accelerometer and demographic variables, indicating that movement and subject parameters were necessary in estimating the EE. The results indicate that the multisensor activity monitor with new prediction models can be used to estimate EE in MWUs with SCI during wheelchair-related activities mentioned in this study. © 2012 American Congress of Rehabilitation Medicine
    corecore