10 research outputs found

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Serum free IgE guided dose reduction of omalizumab: a case report

    No full text
    Abstract Background Omalizumab is a human IgG1 antibody against IgE used as a therapy for sever asthmatic patients with asthma. According to the guidelines of the Global Initiative for Asthma, omalizumab is an add-on drug at treatment step 5 that is used for severe asthma patients who are allergic to perennial allergens. The effects of omalizumab for severe asthma therapy have been validated in multiple clinical studies. However, the long-term effects of omalizumab on IgE production and possibility of resetting of administration dose of omalizumab remain unknown. Case Presentation The serum total and free IgE levels were measured over time in a 63-year-old female patient with allergic asthma who was administered 375 mg omalizumab biweekly for 36 months. Her symptoms did not worsen and clinical course remained favorable after reducing the dose to 375 mg per month. The serum free IgE levels temporarily increased following a dose reduction of omalizumab. The serum free IgE trough level temporarily increased at 4 weeks after capable to reduce the dosage; however, thereafter, the serum free IgE level decreased to desired levels (below 30 ng/mL). Conclusions The present case shows the possibility of reducing the dose following the long-term use of omalizumab. Considering the high medical cost of omalizumab, the dose reduction may be a viable option. It may be useful to measure the serum free IgE level to appropriately identify patients in whom the dose can be reduced, and to carefully monitor the clinical course

    Myeloid differentiation-2 is a potential biomarker for the amplification process of allergic airway sensitization in mice

    Get PDF
    Background: Allergic sensitization is a key step in the pathogenesis of asthma. However, little is known about the molecules that are critical regulators for establishing allergic sensitization of the airway. Thus, we conducted global gene expression profiling to identify candidate genes and signaling pathways involved in house dust mite (HDM)-induced allergic sensitization in the murine airway. Methods: We sensitized and challenged mice with HDM or saline as a control through the airway on days 1 and 8. We evaluated eosinophilia in bronchoalveolar lavage fluid (BALF), airway inflammation, and mucus production on days 7 and 14. We extracted total RNA from lung tissues of HDM- and saline-sensitized mice on days 7 and 14. Microarray analyses were performed to identify up-regulated genes in the lungs of HDM-sensitized mice compared to the control mice. Data analyses were performed using GeneSpring software and gene networks were generated using Ingenuity Pathways Analysis (IPA). Results: We identified 50 HDM-mediated, stepwise up-regulated genes in response to allergic sensitization and amplification of allergic airway inflammation. The highest expressed gene was myeloid differentiation-2 (MD-2), a lipopolysaccharide (LPS)-binding component of Toll-like receptor (TLR) 4 signaling complex. MD-2 protein was expressed in lung vascular endothelial cells and was increased in the serum of HDM-sensitized mice, but not in the control mice. Conclusions: Our data suggest MD-2 is a critical regulator of the establishment of allergic airway sensitization to HDM in mice. Serum MD-2 may represent a potential biomarker for the amplification of allergic sensitization and allergic inflammation

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    No full text
    corecore