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a b s t r a c t

Background: Allergic sensitization is a key step in the pathogenesis of asthma. However, little is known
about the molecules that are critical regulators for establishing allergic sensitization of the airway. Thus,
we conducted global gene expression profiling to identify candidate genes and signaling pathways
involved in house dust mite (HDM)-induced allergic sensitization in the murine airway.
Methods: We sensitized and challenged mice with HDM or saline as a control through the airway on days
1 and 8. We evaluated eosinophilia in bronchoalveolar lavage fluid (BALF), airway inflammation, and
mucus production on days 7 and 14. We extracted total RNA from lung tissues of HDM- and saline-
sensitized mice on days 7 and 14. Microarray analyses were performed to identify up-regulated genes
in the lungs of HDM-sensitized mice compared to the control mice. Data analyses were performed using
GeneSpring software and gene networks were generated using Ingenuity Pathways Analysis (IPA).
Results: We identified 50 HDM-mediated, stepwise up-regulated genes in response to allergic sensiti-
zation and amplification of allergic airway inflammation. The highest expressed gene was myeloid
differentiation-2 (MD-2), a lipopolysaccharide (LPS)-binding component of Toll-like receptor (TLR) 4
signaling complex. MD-2 protein was expressed in lung vascular endothelial cells and was increased in
the serum of HDM-sensitized mice, but not in the control mice.
Conclusions: Our data suggest MD-2 is a critical regulator of the establishment of allergic airway
sensitization to HDM in mice. Serum MD-2 may represent a potential biomarker for the amplification of
allergic sensitization and allergic inflammation.
Copyright © 2015, Japanese Society of Allergology. Production and hosting by Elsevier B.V. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Asthma is a respiratory disease with symptoms, such as
convulsive wheezing and cough, caused by reversible airway
constriction due to allergic airway inflammation, hyperplasia of
mucus-producing cells, and airway hyperresponsiveness.1 The
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immunological mechanism of asthma has been considered to be of
mainly adaptive immune responses and production of T-helper
type 2 (TH2) cell-derived cytokines, such as IL-4, IL-5, and IL-13.
These cytokines inform asthma phenotypes and aid the develop-
ment of new therapeutic targets for asthma. Ongoing clinical trials
on anti-TH2 cytokine antibodies for asthma therapy have shown
therapeutic efficacy in specific populations of asthma patients
only.2e4 This suggests modulation of adaptive immunity is not a
sufficient in treating asthma. Currently, the immunological mech-
anism underlying asthma is increasingly believed to involve the
innate immunity at levels upstream of adaptive immunity.

Innate immunity is an immune surveillance system for foreign
pathogens. One of the most important innate immune systems is
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the toll-like receptor (TLR) family.5 The TLR4 ligand, a lipopoly-
saccharide (LPS), is a structural material on the wall of gram-
negative bacteria and acts as an adjuvant and prime allergic
sensitization in the airway to promote an asthma-like pheno-
type.6,7 Similarly, the TLR5 ligand flagellin, which is a flagellar
constituent protein of bacteria, also acts as an adjuvant that induces
allergic airway inflammation.8 These suggest that TLRs may be
critical in promoting asthma by priming allergic sensitization to
antigens in the airways.

House dust mite (HDM) is a natural allergen, and is a typical
environmental factors related to the onset of bronchial asthma;
70%e80% of patients with asthma were found to be sensitive to
HDM.9 Dermatophagoides pteronyssinus, an HDM, has several
component allergens such as Der p1 and Der p210. Many of these
allergens, such as Der p1, contain protease activity that is highly
likely to cause airway damage and initiate allergic airway inflam-
mation.11 Moreover, a previous study has reported that HDM could
be identified by TLR4 on the airway epithelium and could stimulate
the production of epithelium-derived cytokines, such as IL-25, IL-
33, and thymic stromal lymphopoietin (TSLP), to induce allergic
airway inflammation.12 In this way, allergic sensitization caused by
HDMwas, at least in part, TLR4-dependent. Furthermore, one of the
HDM allergens, Der p2, has structural and functional homology
with myeloid differentiation-2 (MD-2, also known as LY96), an LPS-
binding component of the TLR 4 signaling complex.13e15 Thus, the
TLR4/MD-2 complex, a component of the innate immune system, is
critical for HDM-induced asthma.

Repeated exposure to an allergen is necessary to establish
allergic sensitization and this process amplifies the development of
allergic airway inflammation. However, little is known about mo-
lecular basis of the amplification process of allergic sensitization. In
this study, we focused on the sensitization phase of HDM-induced
allergic inflammation and performed global gene expression
analysis to identify candidate molecules that potentially play
important roles in the pathogenesis of asthma.

Methods

Animals

We used 6e8-week-old male, C57BL/6J mice (Charles River
Laboratories Japan, Yokohama, Japan). Mice were used in all ex-
periments with 5e8 mice per group.

All studies were approved by the Animal Care and Use Com-
mittee at Nihon University School of Medicine.

Experimental protocol

C57BL/6J mice were intratracheally sensitized with HDM, Der-
matophagoides pteronyssinus at 100 mg/mouse/treatment (con-
taining approximately 0.1 ng of LPS, 70 ng of Der p2 and 13 ng of
Der p1, GREER Laboratories, Lenoir, NC, USA) or with saline as
control on days 1 and 8 (n ¼ 5e8 per group). Bronchoalveolar
lavage fluid (BALF), serum, and lung tissues were examined on days
7 and 14.

Bronchoalveolar lavage fluid

Mice were intraperitoneally administered pentobarbital at
50 mg/kg (Kyoritsu Pharmaceutical/Schering-Plough Corporation,
Tokyo, Japan). Initially, we collected BALF with 1 ml of phosphate-
buffered saline (PBS). After adding 1 ml of erythrocyte lysate, we
measured the number of cells with a cell counter (Invitrogen,
Carlsbad, CA, USA). Using cytospin (Sakura Fine Tech Japan, Tokyo,
Japan), cells were sprayed on glass slides (600 spins for 3 min) and
were allowed to dry naturally, after which we performed
WrighteGiemsa staining by using Diff Quick (Sysmex, Tokyo,
Japan). Specimens were sealed with an encapsulant (Matsunami
Glass Industry, Tokyo, Japan); we then determined the cell type and
number under a microscope.

Immunohistochemical staining

Lungs were fixed in formalin and embedded in paraffin, and the
sections were stained with hematoxylin and eosin (H&E). Inflam-
mation scores were determined in accordance with a previous
study.16 A value from 0 to 3 per criterion was adjudged to each
tissue section scored. Two criteria were scored to evaluate pul-
monary inflammation: peribronchial inflammation and peri-
vascular inflammation. A value of 0 was adjudged when no
inflammation was detectable, a value of 1 for occasional cuffing
with inflammatory cells, a value of 2 for most bronchi or vessels
surrounded by thin layer (one to five cells) of inflammatory cells
and a value of 3 when most bronchi or vessels were surrounded by
a thick layer (more than five cells) of inflammatory cells. As 10e15
tissue sections per mouse were scored, inflammation scores could
be expressed as a mean value and could be compared between
groups. The results are presented as means ± SE. Furthermore,
sections were stainedwith Alcian Blue/periodic acid Schiff (AB/PAS)
to identify mucus-producing cells. Mucus-producing cells were
measured by mucus scores on a scale of 0e3, in accordance with a
previous study.17 The following were the designations for each
mucus score: 0eno mucus, 1ea few cells secreting mucus, 2emany
cells secreting mucus, and 3eextensive production.

Global gene expression analysis

Lung tissues were homogenized using the power masher III
(Nippi, Tokyo, Japan). Total RNA was extracted using RNeasy Mini
Kit (QIAGEN, Hilden, Germany); RNA samples were prepared using
The Ambion® WT Expression Kit (Affymetrix, Santa Clara, CA, USA)
and GeneChip WT Terminal Labeling Kit. Labeling of second-cycle
fragmented RNA and confirmation of DNA fragmentation were
performed using Agilent RNA 6000 nano kit (Agilent Technologies,
Palo Alto, CA, USA); these processes were conducted according to
the manufacturer's protocol. We used GeneChip Mouse Gene 1.0 ST
Arrays (Affymetrix) to conduct hybridization of the array. Using
Genechip Fluidics Station 450, Genechip Scanner 3000 (Affyme-
trix), we measured and quantified fluorescence intensity. The
microarray images were analyzed using Gene Spring 12.5 software
(Agilent Technologies UK, South Queensferry, UK). In addition, we
performed pathway analysis using Ingenuity Pathways Analysis
(IPA, Ingenuity Systems, Redwood City, CA, USA).

Quantitative reverse transcription polymerraise chain reaction (qRT-
PCR)

cDNA libraries were prepared from 10 ng of lung tissue RNA
using PrimeScript 1st strand cDNA Synthesis kit (Takara-Bio,
Shiga, Japan) according to the manufacturer's protocol. We used
TaqMan real-time PCR probes and mouse-specific primers, LY96
and GAPDH, obtained from Applied Biosystems. RT-PCR was per-
formed using a 7500 real-time PCR system (Applied Biosystems,
Carlsbad, CA, USA). Data were normalized to GAPDH using the
DDCt method.

Immunofluorescence staining

Lung tissues were embedded by optimal cutting temperature
(OCT) compound and were cut in frozen sections; anti-mouse MD-
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2 rabbit antibody (10 mg/ml; NOVUS BIOLOGICALS, Littleton, CO,
USA) and anti-mouse CD31 antibody (NOVUS BIOLOGICALS) were
added as primary antibodies. Anti-mouse IgG and anti-rabbit IgG
antibodies (Alexa 488,594, life technologies, Carlsbad, CA, USA)
were added as secondary antibodies. DAPI was used as a mounting
medium (Cell Signaling Technology, Danvers, MA, USA). Staining
was assessed using a laser scanning confocal FV1000 microscope
(Olympus, Tokyo, Japan) under identical settings between
conditions.
Fig. 1. Allergic airway inflammation and mucus hypersecretion during HDM sensitization in
as control, on days 1 and 8. BALF and lung tissues were harvested on days 7 and 14. (B) L
images of lung sections that demonstrate the airways and stained mucus producing cells b
scores and mucus scores. These results are representative of two independent experimen
bronchoalveolar lavage fluid; H&E, hematoxylin and eosin; AB/PAS, Alcian Blue periodic ac
Serum MD-2 measurement using an enzyme-linked immunosorbent
assay (ELISA)

Each 96-well plate was coatedwith 2.5ug/ml of anti-mouseMD-
2 polyclonal antibody (#NBP1-77201, NOVUS BIOLOGICALS) and
incubated overnight at 4 �C. Plates were probed with mouse serum
(1:10 dilution) and BALFs and incubated for a further 2 h at room
temperature. Next, plates were incubated with 0.25 mg/ml biotin-
conjugated anti-mouse MD-2 polyclonal antibody (#H00023643-
mice. (A) Timeline for sensitization. C57BL/6J mice were sensitized with HDM or saline,
eukocyte counts (C) Representative low-magnification (�200) and expanded (�1000)
efore (left) and after (middle and right) HDM sensitization. (D) Airway inflammation
ts (means ± SEM of 5e8 mice per group), *P < 0.05. HDM, house dust mite; BALF,
id Schiff.
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D01P, NOVUS BIOLOGICALS) for 1 h followed by washing and in-
cubationwith streptavidin peroxidase for 30min. After the addition
of 3,30,5,50-tetramethyl-benzidine substrate, reactions were
stoppedwith acid, and optical densities (ODs) were determined at a
wavelength of 450 nm. Relative serum and BALF levels of MD-2
were expressed as fold change relative to that of controls.

Statistical analysis

All data were described as mean ± standard error values (SEM).
Experimental groups were analyzed using Student's t-test for data
Fig. 2. Global gene expression profiles in the amplification process of HDM sensitization. (A
Expression profiles were normalized to control (PBS). Data were first filtered by percentile
and day 7, with a fold change cut-off of �3.0 assumed as significant. After identifying 71 g
significant. (B) Heat map displaying differential gene expression patterns of mRNA by cluster
(yellow). Hierarchical clustering of the 50 genes identified as being stepwise up-regulate
assessing the similarity between genes, 4e5 mice per group. CV, coefficent of variation; PB
under a normal distribution and ManneWhitney U-test for data
indicative of a nonnormal distribution. Statistical significance was
set at a P value of <0.05. Data were analyzed using GraphPad Prism
(GraphPad Software, La Jolla, CA, USA).

Results

Amplification of asthma-like responses during HDM sensitization

Our protocol was based on a previous study.12 We first
confirmed that C57BL/6J was responsive to HDMwith development
) Microarray data analysis by filtering to identify significantly altered gene expression.
(20e100) and CV<50.0%. We performed fold change analysis by comparing the control
enes, we compared day 7 and day 14, with a fold change cut-off of �1.0 assumed as
plot. Probe sets are expressed as above average (red), below average (blue), and average
d in response to HDM sensitization. The dendrogram provide a qualitative means of
S, phosphate-buffered saline; HDM, house dust mite.



Table 1
Top 20 up-regulated genes in the lung of HDM-sensitized mice.

Gene symbol GeneBank accession no Gene description Fold change PBS vs day7

Ly96 BC116785 lymphocyte antigen 96 5.393773
Glp1r BC139464 glucagonelike peptide 1 receptor 5.20324
Lrat AF255061 lecithineretinol acyltransferase (phosphatidylcholineeretinoleOeacyltransferase) 5.089008
Uprt BC147845 uracil phosphoribosyltransferase (FUR1) homolog (S. cerevisiae) 4.449313
A930038C07Rik BC047154 RIKEN cDNA A930038C07 gene 4.207658
Hmcn1 hemicentin 1 4.183091
Extl3 AF083550 exostoses (multiple)elike 3 4.071339
Vsnl1 AY101375 visininelike 1 3.981668
Ear1 AY316149jBC150991 eosinophileassociated, ribonuclease A family, member 1 3.975323
Tmem47 BC019751 transmembrane protein 47 3.917776
Ceacam1 M77196 carcinoembryonic antigenerelated cell adhesion molecule 1 3.67258
Cd59ajCd59b U60473 CD59a antigenjCD59b antigen 3.578231
4932438A13Rik RIKEN cDNA 4932438A13 gene 3.536576
Prkar2a AF533977 protein kinase, cAMP dependent regulatory, type II alpha 3.455188
Ugcg BC050828 UDPeglucose ceramide glucosyltransferase 3.429925
S1pr1 BC051023 sphingosinee1ephosphate receptor 1 3.35154
Scd2 BC040384 stearoyleCoenzyme A desaturase 2 3.350781
Cd38 BC046312 CD38 antigen 3.334364
Hsd11b1 BC132364 hydroxysteroid 11ebeta dehydrogenase 1 3.275633
Pyhin1 BC096384 pyrin and HIN domain family, member 1 3.266723

Fig. 3. Interactive network of MD-2 with known TLR4-related genes using IPA. Overexpressed genes are shown in red, whereas down-expressed genes are shown in green. In-
teractions among the different genes in the network are displayed as solid lines (direct interaction) or dotted (indirect interaction) lines that connect the different genes. Blue arrow
indicates MD-2.
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Fig. 4. MD-2 gene expression in lungs of HDM-sensitized mice. Validation of micro-
array analysis by qRT-PCR analysis of RNA expression in the lungs of HDM-sensitized
mice. Fold change calculated compared with PBS control after normalization for
GAPDH. These results are representative of two independent experiments
(means ± SEM of 3 mice per group), *P < 0.05.
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allergic inflammation, mucus production and AHR to HDM when
using the originally reported protocol12 (Supplementary Fig. 1). We
next focused on the HDM sensitization phase and conducted an
animal model of asthma, in which twice-repeated intratracheal
administration of HDM amplifies asthma-like responses in mice
(Fig. 1A). The number of eosinophils and lymphocytes were
significantly increased in the BALF of HDM-sensitized mice
compared with the control mice, but not neutrophils. Hammad
et al. reported that HDM exposure, at a dose identical to that used in
this study, is known not to induce neutrophilia in the BALF because
there is no induction of KC or G-CSF.12 In addition, allergic airway
Fig. 5. MD-2 protein expression in lung vascular endothelial cells of HDM-sensitized mice. Im
and merge in the HDM-sensitized (day 14) and control mice.
inflammation on day 14 (1 week after the second HDM adminis-
tration) was significantly higher than that on day 7 (1 week after
the first HDM administration) (Fig. 1B). Similarly, H&E and AB/PAS
staining showed that histological changes in the lung, such as in-
flammatory cell infiltration and goblet cell hyperplasia, on day 14
were increased compared with those on day 7 (Fig. 1C, D). On day
14, AHR was significantly increased in HDM-exposed mice stimu-
lated by 50 mg/ml of methacholine, but on day 7, there was a trend
that did not reach statistical significance (Supplementary Fig. 2A,
B). Total IgE and HDM-specific IgG1 in the serum and IL-4 in the
BALF were significantly increased on day 14 (Supplementary Fig. 3).
IL-5 displayed a slight trend; however, this difference did not reach
statistical significance (data not shown). We were unable to mea-
sure IL-13. Levels of these cytokines were found to be too low to be
accurately measured. These results indicate that twice-repeated
intratracheal administration of HDM amplified allergic airway
inflammation, mucus production and AHR.
Global gene expression profiles of sensitization phase

To identify the molecule relevant to the amplification of allergic
sensitization to HDM, we performed global gene expression anal-
ysis using RNAs isolated from lung tissues of mice (Fig. 1). We first
excluded genes, which had poor reproducibility or had wide vari-
ability, and selected genes which had <50% variability (CV value) in
expression values in at least one of three conditions (control group,
day 7, day 14). After normalization to controls, 9987 genes were
identified (Fig. 2A). As we focused on the amplification process of
HDM-sensitization, we performed fold change analysis by
comparing the control and day 7 with a fold change cut-off of �3.0
assumed as significant. After identifying 71 genes, we compared
days 7 and 14 with a fold change cut-off of �1.0 assumed as sig-
nificant. From our stepwise analysis during allergic sensitization,
we identified 50 HDM-mediated up-regulated genes (Fig. 2A). Heat
maps demonstrated differential gene expression patterns of mRNA
from three different conditions (PBS control, HDM day 7 and HDM
day 14) (Fig. 2B). The highest expressed gene was LY96, known as
MD-2, an LPS-binding component of TLR4 signaling complex
(Table 1).
munofluorescence staining of lung tissues with anti-MD2, anti-CD31 antibodies, DAPI,



Fig. 6. MD-2 protein levels in serum and BALF of HDM-sensitized mice. We collected
serum and BALF from HDM-sensitized mice or control mice on day 14 and measured
serum (A) and BALF (B) MD-2 protein using ELISA in OD values. Serum and BALF levels
of MD-2 are expressed as fold change relative to controls. Data are represented as
means ± SEM, 5e9 per group, *P < 0.05 vs PBS control. (C) The correlation between the
number of eosinophils in BALF and serum MD-2 levels in HDM-exposed mice on day
14. Pearson's correlation coefficient was used to evaluate the correlation between two
sets of variables. Statistical significance was set at a P value of <0.05. Data were
analyzed using GraphPad Prism (GraphPad Software, La Jolla, CA, USA).
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Interactive network of MD-2 with TLR-4 related genes during
sensitization

MD-2 is one of the molecules that binds to TLR4 and activates
innate immune reaction. Thus, we performed pathway analysis of
the genes which were associated with TLR4, including MD-2, using
IPA. In the pathway analysis, we found that there were no down-
regulated TLR4-related genes during HDM sensitization; most of
the expressions in the TLR4-related genes were up-regulated
(Fig. 3). These data suggest MD-2 and other TLR4 signaling path-
ways were activated by HDM sensitization.

Validation of MD-2 gene expression

On qRT-PCR to validate gene expression of MD-2 in microarray
data, we found that MD-2 expression was up-regulated in a step-
wise manner from control to day 7 and day 14 in HDM-sensitized
lung (Fig. 4).

MD-2 expression in lung vascular endothelial cells of HDM-
sensitized mice

To clarify the localization of MD-2 during HDM sensitization
phase, we conducted immunofluorescence staining of the lung
tissue using anti-mouse MD-2 antibody. On immunofluorescence
staining, we found that MD-2 was histologically expressed on lung
blood vessels in HDM-sensitized mice on day 14 (Fig. 5, left, lower)
but not the control mice (Fig. 5, left, upper). In order to confirm the
localization of MD-2, we used CD31, a marker for vascular endo-
thelial cells. Moreover, we found that MD-2 and CD31 were
expressed at the same location in the lung of HDM-sensitized mice
(Fig. 5, right, lower). These suggested that MD-2 is expressed in
lung vascular endothelial cells during HDM sensitization
throughout the airway.

Serum level of MD-2 in HDM-sensitized mice

Because MD-2 was expressed in the lung vascular endothelium
during HDM sensitization, we hypothesized that MD-2 would be
released into the blood.

To address this, we measured MD-2 in the serum using the
ELISA method. MD-2 protein expression in the serum significantly
increased on day 14 compared with the control in OD values
(Fig. 6A). No difference was observed in the MD-2 protein level in
BALF of HDM-sensitized mice when compared with that of the
control mice in OD values (Fig. 6B). We evaluated the correlation
between the numbers of eosinophils in the BALF andMD-2 levels in
serum on day 14 but not MD-2 levels in the BALF; however, there
was a trend that did not reach statistical significance (Fig. 6C). We
also measured the numbers of eosinophils in BALF and MD-2 in
serum on day 21 (7 days following the third HDM exposure on day
15) (Supplementary Fig. 4A, B, C) and evaluated this correlation. On
day 21, MD-2 serum levels correlated significantly with the number
of eosinophil in the BALF (Supplementary Fig. 4D)

Discussion

In this study, we explored the molecules that amplify allergic
inflammation in the HDM sensitization phase by global gene
expression analysis of murine lung tissue. We found that the MD-2
gene was significantly up-regulated in the lungs during airway
sensitization to HDM and activation of the TLR4 signaling cascade
was important for this sensitization phase. In addition, MD-2 pro-
tein was expressed in lung vascular endothelial cells and increased
in the serum during HDM sensitization.
Shimazu et al. first reported that MD-2 binds to TLR4 on the cell
surface and enables TLR4 response to LPS.18 MD-2 contains a hy-
drophobic pocket that is suitable for accommodating endotoxic
lipid A.19 The lipid A portion corresponds to a conserved molecular
pattern of LPS and is the main inducer of biological responses to
LPS.20 In an in vivo study using MD-2 deficient mice, MD-2 was
found to be essential for LPS response via TLR4 and protected
against bacterial infection.21

In murine models of asthma, allergic responses to HDM are
strain-dependent due to differing genetic backgrounds.22,23 C57BL/
6J, used in this study, is a responder to HDM through airway
sensitization.12 Hammad et al. have demonstrated a TLR4-
dependent innate immune response underlies the asthma pheno-
type induced by airway sensitization to HDM.12 Similar to the
allergen used in this study, this HDM contained Der p2, LPS, and Der
p124. Der p2, a protein that has a lipid-binding cavity and the
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highest-scoring functional homologue of MD-2 in a crystal struc-
ture,14 facilitates signaling through direct interactions with the LPS-
binding component of the TLR4 complex.15 Der p2 contains low
levels of LPS which can act as an adjuvant.6,15 One possible mech-
anism by which airway sensitization to HDM is established is that
Der p2 mimics MD-2, binds to TLR4, and acts as an autoadjuvant
that promotes asthma-like phenotype in mice.15 These findings
suggest the TLR4/MD-2 pathway may be critical for allergic airway
sensitization. In human studies, single nucleotide polymorphisms
of MD-2 were found to be significantly associated with hospital
admissions for asthma exacerbations25 and with occupant endo-
toxin exposure and wheezing in agricultural workers,26 suggesting
that MD-2 may also be a key molecule in the pathogenesis of in-
flammatory lung disease, such as asthma, in humans. Based on our
microarray data, the TLR4/MD-2 pathway plays a critical role in the
amplification process of airway sensitization to HDM.

It has been shown that MD-2 is co-expressed in endothelial cells
with TLR427. In addition, MD-2 expression in vascular endothelial
cells was increased by bacterial sepsis.28,29 Vascular endothelial
cells aremain sources of solubleMD-2 (sMD-2) when stimulated by
LPS. In contrast to endothelial cells, bronchial, corneal, and intes-
tinal epithelial cells were found to express low levels of MD-2 in a
steady state.30e32 We found that MD-2 protein levels were potently
induced by HDM sensitization, in vascular endothelial cells. These
data suggest repeated exposure to HDM induced the expression of
MD-2 in lung vascular endothelial cells and may amplify TLR4/MD-
2-mediated allergic airway inflammation.

In human studies, it has been shown that sMD-2 increased in
the plasma of patients with sepsis,28,29 active tuberculosis,33 and
HIV.34 Plasma levels of sMD-2 rapidly decline during tuberculosis
treatment; thus, sMD-2 could potentially serve as a complimentary
biomarker when evaluating initial response to tuberculosis ther-
apy.33We demonstrated that HDM-mediated induction of sMD-2 in
the serum was increased and correlated with eosinophilia in the
BALF in mice. HDM-induced serumMD-2 may become a biomarker
for bronchial asthma.

We speculate that airway sensitization to HDM induced MD-2
expression in lung vascular endothelial cells and release sMD-2 in
blood because of an innate immune response to pathogens con-
taining HDM. Further studies are needed to validate the role of MD-
2 in HDM-induced allergic sensitization of the airways in mice and
in human asthma.

In conclusion, to the best of our knowledge, we demonstrate for
the first time that the innate immune-regulated gene, MD-2, was
induced by allergic airway sensitization to HDM. Serum MD-2 is a
potential biomarker of amplification of allergic sensitization and of
the severity of allergic inflammation in human asthma.
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